Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Technical Paper

Evaluation of Lanthanum Based Diesel Oxidation Catalyst for Emission Reduction with and without Ceria Support

2016-02-01
2016-28-0023
Diesel particulates are mainly composed of elemental carbon (EC) and organic carbon (OC) with traces of metals, sulfates and ash content. Organic fraction of the particulate are considered responsible for its carcinogenic effects. Diesel oxidation catalyst (DOC) is an important after-treatment device for reduction of organic fraction of particulates. In this study, two non-noble metal based DOCs (with different configurations) were prepared and evaluated for their performance. Lanthanum based perovskite (LaMnO3) catalyst was used for the preparation of DOCs. One of the DOC was coated with support material ceria (5%, w/w), while the other was coated without any support material. Prepared DOCs were retrofitted in a four cylinder water cooled diesel engine. Various emission parameters such as particulate mass, particle number-size distribution, regulated and unregulated emissions, EC/OC etc., were measured and compared with the raw exhaust gas emissions from the prepared DOCs.
Technical Paper

The Secondary Organic Carbon (SOC) Formation from a CRDI Automotive Diesel Engine Exhaust

2011-04-12
2011-01-0642
Condensed soot coming out of vehicular exhaust is commonly classified as organic carbon (OC) and elemental carbon (EC). OC can be directly emitted to the atmosphere in the particulate form (primary carbon) from the tailpipe or can be produced by gas-to-particle conversion process (secondary organic carbon, SOC). Under typical atmospheric dilution conditions, most of the semi-volatile material is present in the form of soot. SOC holds wider implications in terms of their adverse health and climate impact. Diesel exhaust is environmentally reactive and it has long been understood that the ambient interaction of exhaust hydrocarbons and NOx results in the formation of ozone and other potentially toxic secondary organic carbon species. The current emission norms look at the primary emissions from the engine exhaust. Also, research efforts are geared towards controlling the emissions of primary carbon.
Technical Paper

Oxidation Stability of Biodiesel Produced from Non-Edible Oils of African Origin

2011-04-12
2011-01-1202
Mono alkyl esters of long-chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, also known as biodiesel are well positioned to replace mineral diesel. The outstanding technical problem with biodiesel is that it is more susceptible to oxidation owing to its exposure to oxygen present in the air and high temperature. This happens mainly due to the presence of varying numbers of double bonds in the free fatty acid molecules. The chemical reactivity of esters can therefore be divided into oxidative and thermal instability, which can be determined by the amount and configuration of the olefinic unsaturation in the fatty acid chains. Many of the plant-derived fatty oils contain polyunsaturated fatty acids that are more prone to oxidation. Increasing production of biodiesel from vegetable oils (edible) places strain on food production, availability and price and leads to food versus fuel conflict.
X