Refine Your Search

Search Results

Author:
Technical Paper

Use of Butanol Blend Fuels on Diesel Engines - Effects on Combustion and Emissions

2020-04-14
2020-01-0333
Butanol, a four-carbon alcohol, is considered in the last years as an interesting alternative fuel, both for Diesel and for gasoline application. Its advantages for engine operation are: good miscibility with gasoline and diesel fuels, higher calorific value than ethanol, lower hygroscopicity, lower corrosivity and possibility of replacing aviation fuels. Like ethanol, butanol can be produced as a biomass-based renewable fuel or from fossil sources. In the research project, DiBut (Diesel and butanol) addition of butanol to Diesel fuel was investigated from the points of view of engine combustion and of influences on exhaust aftertreatment systems and emissions. One investigated engine (E1) was with emission class “EU Stage 3A” for construction machines, another one, engine (E2) was HD Euro VI. The most important findings are: with higher butanol content, there is a lower heat value of the fuel and there is lower torque at full load.
Technical Paper

Considerations of Periodical Technical Inspection of Vehicles with deNOx Systems

2019-04-02
2019-01-0744
An independent periodical technical inspection (PTI)*) of vehicles is proposed in the last time as a better prevention against increased emissions of the fleet. Several projects focused on the Diesel vehicles (HD & LD) and on the functionality of the exhaust aftertreatment systems as a key element for lowering emissions of a vehicle or machine. The present paper summarizes the results obtained on 3 modern passenger cars Euro 6b (with EGR, DOC, DPF & SCR) during load jumps, representing the heat-up or cool-down behaviour of the exhaust system. The portable devices for PTI were tested together with the stationary measuring systems of the engine laboratory. In the second part of the report, the present knowledge and proposals of supplementary test procedures (like IUC or PTI) were shortly described.
Technical Paper

PN-Emissions of Gasoline Cars MPI and Potentials of GPF

2018-04-03
2018-01-0363
Further efforts to reduce the air pollution from traffic are undertaken worldwide and the filtration of exhaust gas will also be increasingly applied on gasoline cars (GPF1 … gasoline particle filter). In the present paper, some results of investigations of nanoparticles from four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, two variants of GPF were investigated on a high-emitting modern vehicle, including analytics of PAH and attempts of soot loading in road application. The modern MPI vehicles can emit a considerable amount of PN, which in some cases attains the level of Diesel exhaust gas without DPF and can pass over the actual European limit value for GDI (6.0 x 1011 #/km). The GPF-technology offers in this respect further poten-tials to reduce the PN-emissions of traffic.
Technical Paper

Nanoparticle Emissions of DI Gasoline Cars with/without GPF

2017-03-28
2017-01-1004
In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
Technical Paper

Effects of Ethanol Blend Fuels E10 and E85 on the Non-Legislated Emissions of a Flex Fuel Passenger Car

2016-04-05
2016-01-0977
A well-balanced use of alternative fuels worldwide is an important objective for a sustainable development of individual transportation. Several countries have objectives to substitute a part of the energy of traffic by ethanol as the renewable energy source. The global share of Bioethanol used for transportation is continuously increasing. Investigations of limited and unregulated emissions of a flex fuel vehicle with gasoline-ethanol blend fuel have been performed in the present work on the chassis dynamometer according to the measuring procedures, which were established in the previous research in the Swiss Network to adequately consider the transient (WLTC) and the stationary operation (SSC). The investigated fuel contained ethanol (E), in the portions of 10% & 85% by volume. The investigated vehicle represented a newer state of technology and an emission level of Euro 5. The engine works with homogenous GDI concept and with 3-W-catalyst (3WC).
Technical Paper

Investigations of NO2 in Legal Test Procedure for Diesel Passenger Cars

2015-09-06
2015-24-2510
As a result of increased use of catalytic exhaust aftertreatment systems of vehicles and the low-sulfur Diesel fuels there is an increasing share of nitrogen dioxide NO2 in the ambient air of several cities. This is in spite of lowering the summary nitric oxides NOx emissions from vehicles. NO2 is much more toxic than nitrogen monoxide NO and it will be specially considered in the next legal testing procedures. There are doubts about the accuracy of analyzing the reactive substances from diluted gas and this project has the objective to show how NO2 is changing as it travels down through the exhaust- and the CVS systems. For legal measurements of NO2 a WLTP-DTP subgroup (Worldwide Light Duty Test Procedures - Diesel Test Procedures) proposed different combinations of NOx-analyzers and analysis of NO and NOx. Some of these set-ups were tested in this work.
Technical Paper

Experiences from Nanoparticle Research on Four Gasoline Cars

2015-04-14
2015-01-1079
The invisible nanoparticles (NP)*) from combustion processes penetrate easily into the human body through the respiratory and olfactory pathways and carry numerous harmful health effects potentials. NP count concentrations are limited in EU for Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. The limit for GDI was temporary extended to 6 × 1012 #/km, (regulation No. 459/2012/EU). Nuclei of metals as well as organics are suspected to significantly contribute especially to the ultrafine particle size fractions, and thus to the particle number concentration. In the project GasOMeP (Gasoline Organic & Metal Particulates) metal-nanoparticles (including sub 20nm) from gasoline cars are investigated for different engine technologies. In the present paper some results of investigations of nanoparticles from four gasoline cars - an older one with MPI and three newer with DI - are represented.
Technical Paper

Particle Emissions of Modern Handheld Machines

2014-11-11
2014-32-0036
The progressing exhaust gas legislation for on- and off-road vehicles includes gradually the nanoparticle count limits. The invisible nanoparticles from different emission sources penetrate like a gas into the living organisms and may cause several health hazards. The present paper shows some results of a modern chain saw with & without oxidation catalyst, with Alkylate fuel and with different lube oils. The measurements focused specially on particulate emissions. Particulates were analysed by means of gravimetry (PM) and granulometry SMPS (PN). In this way the reduction potentials with application of the best materials (fuel, lube oil, ox-cat.) were indicated. It has been shown that the particle mass (PM) and the particle numbers (PN), which both consisting almost exclusively of unburned lube-oil, can attain quite high values, but can be influenced by the lube oil quality and can be considerably reduced with an oxidation catalyst.
Technical Paper

Investigations of Changes of the 2-Stroke Scooters Nanoparticles in the Exhaust- and CVS-System

2013-09-08
2013-24-0178
Nanoparticle emissions of two 2-stroke scooters were investigated along the exhaust and the CVS (Constant Volume Sampling) systems. Two configurations were tested: regular full-flow dilution configuration (denoted as “closed”) and also a modified sampling configuration (denoted as “open”). The scooters represent two distinct modern technologies. One scooter had direct injection TSDI*) (Two-Stroke Direct Injection). The other had a carburettor. Depending on the technology, the scooters produce different kind of aerosols (state-of-oxidation and SOF content). Moreover, the scooters were operated with and without oxidation catalyst. The tests were performed at two constant vehicular speeds (20 km/h and 40 km/h). The measuring procedures are those established during the previous research of the Swiss Scooter Network. The nanoparticulate emissions were measured using SMPS (Scanning Mobility Particle Sizer) and DC (Diffusion Charging) sensors.
Technical Paper

Research of Techniques for Low Pressure Indication in Internal Combustion Engines

2012-04-16
2012-01-0444
In order to analyze the processes during the gas exchange in the engine, knowledge of pressure states in both inlet and outlet is required. This pressure measuring is known as “low pressure indication”. In the present work, three examples of controlling the quality of low pressure measurement are presented. An insight in the pressure waves in exhaust pipe, especially in the exhaust blow-off is given. It was shown that: a small inaccuracy of measurement, lower than 10 mbar can be attained, the asymmetric course of the exhaust pulse can clearly be verified, and a protection screen for a sensor exposed to the exhaust blow-off pressure wave can be a tool to optimize between longlife and accuracy. The most important statements are: both presented methods of low pressure indication - the direkt and the indirect yield the results with highest accuracy.
Technical Paper

Influences of Different Exhaust Filter Configurations on Emissions of a 2-Stroke Scooter Peugeot TSDI

2011-09-11
2011-24-0203
Exhaust emissions measurements of a small 2-S Scooter Peugeot TSDI*), 50cc with different particle filters have been performed in this present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network, [1, 2, 3, 4, 5, 6, 7, 8, 9]. The investigated particle filtration materials were supplied from different manufacturers as samples without specifications and they were applied by the research laboratory in a special muffler able to be taken apart. The investigated scooter represented a modern (2002) 2-stroke technology with direct injection, with oxidation catalyst and with injection of the lube oil to the intake air. Since there is a special concern about the particle emissions of the small engines, the particle mass and nanoparticle measurements were systematically carried out. The nanoparticulate emissions were measured by means of SMPS (CPC) and NanoMet*).
Technical Paper

(Particle) Emissions of Small 2-& 4-Stroke Scooters with (Hydrous) Ethanol Blends

2010-04-12
2010-01-0794
The objectives of the present work are to investigate the regulated and unregulated (particle) emissions of a classical and modern 2-stroke and a typical 4-stroke scooter with different ethanol blend fuels. There is also comparison of two different ethanol fuels: pure ethanol (E) *) and hydrous ethanol (EH) which contains 3.9% water and is denatured with 1.5% gasoline. Special attention is paid in this research to the hydrous ethanol, since the production costs of hydrous ethanol are much less than those for (dry) ethanol. The vehicles are with carburettor and without catalyst, which represents the most frequent technology in Eastern Asia and offers the information of engine-out emissions. Exhaust emissions measurements have been performed with fuels containing ethanol (E), or hydrous ethanol (EH) in the portion of 5, 10, 15 and 20% by volume. During the test systematical analysis of particle mass (PM) and nano-particles counts (NP) were carried out.
Journal Article

Emissions of 2-Stroke Scooters with Ethanol Blends

2009-09-13
2009-24-0143
A well balanced use of alternative fuels is an important objective for a sustainable development of individual transportation worldwide. Several countries have objectives to substitute a part of the energy of traffic by ethanol as the renewable energy source. Investigations of limited and unregulated emissions of two 2-S scooters with gasoline-ethanol blend fuels have been performed in the present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network (since 2000). The investigated fuels contained ethanol (E), in the portion of 5, 10, 15 and 20% by volume. The investigated 2-S scooters represented a newer and an older 2-stroke technology with carburettor. The newer one was investigated with and without catalyst and the older one only in the original state without catalyst.
Technical Paper

Combinations of Technical Measures for Reduction of Particle Emissions & Toxicity of 2-S Scooters

2009-04-20
2009-01-0689
2- and 3-wheelers with 2-S propulsion are still a very serious source of air pollution worldwide in many urban areas. Therefore, every effort to reduce the emissions of those vehicles is an important contribution to improve the air quality. In the present work detailed investigations of regulated emissions and of particle emissions of 2-stroke scooters with direct injection and with carburator were performed. To demonstrate the emission reduction potentials some possibilities of emission improvements were grouped into steps. These technical measures were: ○ Higher tier lube oils ○ Lower oil dosing ○ Active oxidation catalyst ○ Supplementary filtration & oxidation devise (WFC) **) ○ Special fuel. Particle mass and nanoparticles (number), which are amply present in 2-stroke exhaust gas and which contribute strongly to the toxicity level are still unlimited by the international exhaust gas legislation. They were extensively investigated in the present project series.
Technical Paper

Catalyst Aging and Effects on Particle Emissions of 2-Stroke Scooters

2008-04-14
2008-01-0455
An active oxidation catalyst is an efficient measure to reduce not only gaseous components (CO, HC), but also particle emissions (mostly oil condensates) of a small 2-stroke engine with lost oil lubrication. Since the 2- and 3-wheelers with 2-stroke propulsion are still a very serious source of air pollution worldwide in many urban areas, it is important to have a look on some consequences of an improperly working catalyst. The present paper shows some results of user-oriented aging of catalyst on the vehicle and results of limited emissions and unlimited (nano)particles during the catalysts screening tests. The works are a part of an international scooter network project, which was performed (2004 to 2007) in the Laboratories for IC-Engines & Exhaust Emission Control of the University of Applied Sciences, Biel, Switzerland with main support of the Swiss Federal Office of Environment (BAFU), Swiss Petrol Union (EV) and Swiss Lubes (VSS).
Technical Paper

Diesel NO/NO2/NOX Emissions - New Experiences and Challenges

2007-04-16
2007-01-0321
During the VERT *) testing of different DPF systems it was remarked, that the oxidation catalyst converts sometimes a big part of NO to NO2, producing on the one hand a more toxic composition of the exhaust gases and causing on the other hand measuring artefacts, which tend to underestimate of NO2 and NOx by the cold NOx - measurement. The present work summarizes the experiences in this matter elaborated at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during several VERT activities and didactic projects on engine and chassis dynamometers in the years 2000-2006.
Technical Paper

(Nano) Particles from 2-S Scooters: SOF / INSOF; Improvements of Aftertreatment; Toxicity

2007-04-16
2007-01-1089
Limited and non-regulated emissions of scooters were analysed during several annual research programs of the Swiss Federal Office of Environment (BAFU) *). Small scooters, which are very much used in the congested centers of several cities, are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburettor were performed. The nanoparticulate emissions were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for SOF/INSOF, PAH and toxicity equivalence (TEQ), were carried out in an international project network. Particle mass emission (PM) of 2-S Scooters consists mostly of SOF.
Technical Paper

Research on Particle Emissions of Modern 2-Stroke Scooters

2006-04-03
2006-01-1078
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for PAH & SOF/INSOF, as well as for VOC were carried out in an international project network.
Technical Paper

Nanoparticle Emissions of a DI 2-Stroke Scooter with Varying Oil- & Fuel Quality

2005-04-11
2005-01-1101
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of a Peugeot scooter with TSDI (Two Stroke Direct Injection) were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. It can be stated, that the oil and fuel quality have a considerable influence on the particle emissions, which are mainly oil condensates.
Technical Paper

Addition of CNG and Reformer Gas to the Gasoline Fuelled SI-Engine

2004-03-08
2004-01-0973
1 Addition of gaseous fuels to the gasoline fuelled SI-engine offers several potentials of improvements, like: cold start without enrichment, lower engine-out emissions, in certain cases better strategy of catalyst heating. In the present work some results of investigations with addition of compressed natural gas CNG*) and of H2-containing reformer gases are presented. Two engines were fuelled with different compositions of H2-CO-CO2-N2 mixtures as model gases for methanol-, or gasoline- reformed fuels. The investigations were performed at warm, stationary, part load operation. Due to the presence of hydrogen the reformer gas causes more advantages, than CNG. It lowers the gaseous emission components, shortens the combustion duration, increases the combustion stability and enables much more expanded lean-limits and EGR-limits. The passive components of the reformer gas (CO2, N2) have similar influence on NOx-reduction as the internal EGR.
X