Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Application of the Hybrid FE-SEA Method to Predict Sound Transmission Through Complex Sealing Systems

2011-05-17
2011-01-1708
Currently, the use of numerical and analytical tools during a vehicle development is extensive in the automotive industry. This assures that the required performance levels can be achieved from the early stages of development. However, there are some aspects of the vibro-acoustic performance of a vehicle that are rarely assessed through numerical or analytical analysis. An example is the modeling of sound transmission through vehicle sealing systems. In this case, most of the investigations have been done experimentally, and the analytical models available are not sufficiently accurate. In this paper, the modeling of the sound transmission through a vehicle door seal is presented. The study is an extension of a previous work in which the applicability of the Hybrid FE-SEA method was demonstrated for predicting the TL of sealing elements.
Technical Paper

Numerical Investigation of the Transmission Loss of Seals and Slits for Airborne SEA Predictions

2009-05-19
2009-01-2205
Seals and slits are often an important transmission path for vehicle interior noise at mid and high frequencies, and they are therefore often included in system level SEA models of interior noise. The transmission loss of seals and slits in such models is typically either measured experimentally or predicted using simple analytical models. The problem with the former is that it is expensive to investigate different design options using test; the problem with the latter is that simple analytical models often do not contain enough detail. The objective of this paper is therefore to investigate how much detail is needed in order to predict the transmission loss of typical slits and seals. Typical door seals are not directly exposed to exterior and interior sound fields, but instead are inserted in complicated “channel” sections formed by the door and pillar or rail structures. This study is therefore divided in two parts.
Journal Article

Guidelines for Using Fast Multipole BEM to Calculate Automotive Exterior Acoustic Loads in SEA Models

2009-05-19
2009-01-2220
Automotive interior noise at mid and high frequencies is typically dominated by the airborne noise from acoustic sources that are spatially distributed around a vehicle. Each source is typically spatially compact (for example, a tire contact patch) but the source radiates sound that then propagates across the entire exterior surface of the vehicle. To characterize a source it is therefore necessary to know both the sound pressure level in the vicinity of the source and also the way in which sound from the source diffracts around the vehicle. The former depends on the details of the source, the latter typically depends on the overall vehicle geometry. When creating Statistical Energy Analysis (SEA) models of interior noise, the diffraction of airborne loads around a vehicle is often measured experimentally.
X