Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Developing Analysis for Large Displacement Stability for Aircraft Electrical Power Systems

2014-09-16
2014-01-2115
Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development.
Technical Paper

Power Quality Analysis Framework for AC and DC Electrical Systems

2014-09-16
2014-01-2209
Analyzing and maintaining power quality in an electrical power system (EPS) is essential to ensure that power generation, distribution, and loads function as expected within their designated operating regimes. Standards such as MIL-STD-704 and associated documents provide the framework for power quality metrics that need to be satisfied under varying operating conditions. However, analyzing these power quality metrics within a fully integrated EPS based solely on measurements of relevant signals is a different challenge that requires a separate framework containing rules for data acquisition, metric calculations, and applicability of metrics in certain operating conditions/modes. Many EPS employed throughout industry and government feature various alternating-current (ac) power systems.
Journal Article

Aircraft Electrical Power Systems and Nonlinear Dynamic Loads

2012-10-22
2012-01-2182
Aircraft utilize electrical power for many functions ranging from simple devices such as resistive heaters to highly advanced and complex systems responsible for communications, situational awareness, electronic warfare and fly-by-wire flight controls. The operational states of these electronic systems affect safety, mission success and the overall economic expense of operation and maintenance. These electronic systems rely on electrical power within established limits of power quality. In recent years, electrical power quality is becoming excessively degraded due to increased usage of nonlinear and dynamic loads coupled to aircraft power systems that were neither designed nor tested for these loads. Legacy power generation systems were designed for electrical loads with resistive and inductive properties, which previously represented the majority of actual aircraft electrical loads.
X