Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Optimum Guide Position Design of a Cockpit Module for Decreasing the Permanent Deformation

2010-04-12
2010-01-0393
The noise of interior plastic parts has been one of the major driving factors in the design of automotive interior assemblies. This phenomenon is one of the major contributors to the perceived quality in a vehicle. The noise is caused by interior plastic parts and other parts as a result of permanent deformation. Traditionally, noise issues have been identified and rectified through extensive hardware testing. However, to reduce the product development cycle and minimize the number of costly hardware builds, hardware testing must rely on engineering analysis and upfront simulation in the design cycle. In this paper, an analytical study to reduce permanent deformation in a cockpit module is presented. The analytical investigation utilizes a novel and practical methodology, which is implemented through the software tools, ABAQUS and iSight, for the identification and minimization of permanent deformation.
Technical Paper

A Study on the Optimal Design of Automobile Interior Plastic Parts (A-Pillar Trim) Considering Heat-Resistant and Mechanical Characteristics

2009-04-20
2009-01-1232
Interior parts that are composed of plastic usually deform under various temperature conditions. It is necessary to obtain the material properties for an analysis of the thermal deformation under the heat cycle test. Specifically, creep data of plastic material was introduced for studying the time-dependent deformational behavior of the pillar trim in the heat cycle test. The time-hardening version of the power-law creep model was applied to account for the permanent deformation following the heat cycle test, which was verified through a comparison of the test results with the result of finite-element analysis for a simple model. In this study, a methodology was developed for the optimal design of the A-pillar trim in terms of the positions of the mounts. The analyzed results were used to approximate a function that was constructed by the response-surface method. Design procedures were repeated to minimize the thermal deformation at the areas of interest.
X