Refine Your Search

Topic

Search Results

Author:
Technical Paper

Piston Geometries Impact on Spark-Ignition Light-Duty Hydrogen Engine

2024-04-09
2024-01-2613
The European Union aims to be climate neutral by 2050 and requires the transport sector to reduce their emissions by 90%. The deployment of H2ICE to power vehicles is one of the solutions proposed. Indeed, H2ICEs in vehicles can reduce local pollution, reduce global emissions of CO2 and increase efficiency. Although H2ICEs could be rapidly introduced, investigations on hydrogen combustion in ICEs are still required. This paper aims to experimentally compare a flat piston and a bowl piston in terms of performances, emissions and abnormal combustions. Tests were performed with the help of a single cylinder Diesel engine which has been modified. In particular, a center direct injector dedicated to H2 injection and a side-mounted spark plug were installed, and the compression ratio was reduced to 12.7:1. Several exhaust gas measurement systems complete the testbed to monitor exhaust NOx and H2.
Technical Paper

Proposal and Validation of 3D-CFD Framework for Ultra-Lean Hydrogen Combustion in ICEs

2024-04-09
2024-01-2685
In recent months, the increasing debate within the European Union to review the ban on internal combustion engines has led to the pursuit of environmentally neutral solutions for ICEs, as an attempt to promote greater economic and social sustainability. Interest in internal combustion engines remains strong to uphold the principle of technological neutrality. In this perspective, the present paper proposes a numerical methodology for 3D-CFD in-cylinder simulations of hydrogen-fueled internal combustion engines. The combustion modelling relies on G-equation formulation, along with Damköhler and Verhelst turbulent and laminar flame speeds, respectively. Numerical simulations are validated with in-cylinder pressure traces and images of chemiluminescent hydrogen flames captured through the piston of a single-cylinder optical spark-ignition engine.
Technical Paper

Effect of In-Cylinder Flow Motion on Fuel-Air Mixture Formation in a Medium-Duty DI-SI H2 Engine: An Experimentally Supported CFD Study

2024-04-09
2024-01-2117
The increased utilization of batteries and fuel-cells for powering electric applications, as well as bio- and e-fuels into internal combustion engines are seen as options to lower the carbon footprint of industry and transportation sectors. When high power outputs and fast refueling are requisites, H2 ICEs may be a relevant choice. Applications include electricity conversion within a genset or mechanical energy in a vehicle. Within this framework, a John Deere 4045 Diesel engine converted to a H2 single-cylinder is studied at relevant operating conditions for the mentioned use cases, which pose high torque and power output requirements. The modified engine integrates a Phinia DI-CHG 10 outward-opening H2 injector instead of the Diesel unit, as well as a spark-plug rather than the glow-plug.
Technical Paper

Effects of the Combustion Enhancer Containing Alkyl Nitrate (CEN) to Methanol in a Direct-Injection Compression Ignition (DICI) Engine

2023-10-31
2023-01-1619
When a biofuel, methanol is an interesting alternative for internal combustion engines (ICE). Despite drawbacks such as misfiring or instabilities at low loads, methanol has several advantages. Today, dual-fuel systems allow the use of methanol in combination with diesel fuel. This paper will present a different approach, the ability to use methanol in a flex-fuel system. The addition of a combustion enhancer containing alkyl nitrate (CEN) allows the use of methanol in a direct-injection compression ignition (DICI) engine without any changing. In this paper, different volume fractions of this additive are tested. The aim is to show the effect of the CEN on the combustion of methanol. The effect of CEN on methanol has been confirmed thanks to previous tests carried out on a Rapid Compression Machine (RCM). Ignition delay times (IDT) and auto-ignition temperature were reduced with small amounts of CEN.
Technical Paper

Effects of the Combustion Enhancer Containing Alkyl Nitrate (CEN) to Dodecane and HVO as Pilot Fuels on a Compression Ignition Engine Operating in Dual-Fuel with Ammonia

2023-10-31
2023-01-1625
Ammonia is a widely used and known chemical. Today it is seen as a carbon free solution to fuel thermal engines especially in applications where other solutions would not be realistic. For marine applications, electrical or fuel cells solutions for example would not allow spans long enough to sustain big cargo ships ranges. Engine manufacturer such as MAN, Wartsila or Win-GD have already announced the development of marine engine running on ammonia. But while ammonia is a non-CO2 emitting fuel, it has some caveats such as being gaseous in standard conditions and hard to ignite. As it is now, ammonia is usually used in compression ignition engines with the help of highly reactive carbonated pilot fuels. Many forms of dual-fuel combustion are conceivable, although all the simple ones use a carbon-based fuel and quite often originated from fossil oil.
Technical Paper

Experimental Investigation on the Combustion of Biogas Containing Hydrogen in a HCCI Engine

2023-08-28
2023-24-0056
Biogas is a gas resulting from biomass, with a volumetric content of methane (CH4) usually ranging between 50% and 70%, and carbon dioxide (CO2) content between 30% and 50%; it can also contain hydrogen (H2) depending on the feedstock. Biogas is generally used to generate electricity or produce heat in cogeneration system. Due to its good efficiency through the rapid combustion and lean air-fuel mixture, Homogeneous Charge Compression Ignition (HCCI) engine is a good candidate for such application. However, the engine load must be kept low to contain the high-pressure gradients caused by the simultaneous premixed combustion of the entire in-cylinder charge. The homogenous charge promotes low particulate emissions, and the dilution helps in containing maximum in-cylinder temperature, hence reducing nitrogen oxide emissions. However, HC and CO levels are in general higher than in SI combustion.
Technical Paper

Experimental Combustion Analysis in a Gasoline Baseline Hydrogen-Fueled Internal Combustion Engine at Ultra-Lean Conditions

2023-08-28
2023-24-0073
Hydrogen-fueled internal combustion engines (H2ICEs) have emerged as a promising technology for reducing greenhouse gas emissions in the transportation sector. However, due to the unique properties of hydrogen, especially under ultra-lean conditions, the combustion characteristics of hydrogen flames differ significantly from those of conventional fuels. This research focuses on evaluating the combustion process and cycle-to-cycle variations (CCVs) in a single-cylinder port-fuel injection H2ICE, as well as their impact on performance parameters. To assess in-cylinder combustion, three indicators of flame development are utilized and compared to the fundamental properties of hydrogen. The study investigates the effects of various factors including fuel-air equivalence ratio (ranging from 0.2 to 0.55), engine load (IMEP between 1 and 4 bar), and engine speed (900 to 1500 rpm).
Technical Paper

Hydrogen Jet Characterization of an Internal Combustion Engine Injector Using Schlieren Imaging

2023-04-11
2023-01-0301
As the world moves towards a decarbonized motorization, Hydrogen became a strong candidate to replace Diesel and Gasoline. Possibly used in a DI configuration, a huge challenge is the injection and mixing process of the hydrogen in the combustion chamber. In this paper we will focus on the characterization of a compressed hydrogen jet using Schlieren imaging technique and image processing. The injector used in those tests is designed and manufactured by BorgWarner to be used specifically with Compressed Hydrogen Gas (CHG). It operates at medium pressure. Two injection pressures had been used to study the jet development in different conditions. The cylinder pressure (back pressure) will vary between 1.2 bar and 15 bar while the temperature will go from 20°C to 150°C. The discussed tests were made in full nitrogen conditions to avoid any ignition of the hydrogen jet.
Technical Paper

Effect of Standard Tuning Parameters on Mixture Homogeneity and Combustion Characteristics in a Hydrogen Direct Injection Engine

2023-04-11
2023-01-0284
Dihydrogen, as a zero CO2 fuel, is a strong candidate for internal combustion engine to limit global warming. This study shows the impact of standard tuning parameters on mixture homogeneity and combustion characteristics. A 2.2L Diesel engine on which the head was reworked to allow side mounted direct injector and central mounted spark plug was selected. The discussed tests were made at low engine speed and partial load. A spark advance sweep at different air-fuel ratios (λ) was conducted. The exponential relation between λ and NOx emissions is highly marked and extremely low NOx emissions up to 1.7 g/kWh at minimum spark advance for maximum brake torque can be measured. A λ sweep was performed at different starts of injection (SOI). The results show that, depending on the engine speed, a later SOI might lead to lower NOx emissions. For a λ setpoint of 1.8, at 1500 rpm, late SOI leads to 30% higher NOx emissions where at 2500 rpm these emissions are 26% lower.
Technical Paper

Combustion Cycle-To-Cycle Variation Analysis in Diesel Baseline Hydrogen-Fueled Spark-Ignition Engines

2023-04-11
2023-01-0290
In the search for zero-carbon emissions and energy supply security, hydrogen is one of the fuels considered for internal combustion engines. The state-of-the-art studies show that a good strategy to mitigate NOx emissions in hydrogen-fueled spark-ignition engines (H2ICE) is burning ultra-lean hydrogen-air mixtures in current diesel architectures, due to their capability of standing high in-cylinder pressures. However, it is well-known that decreasing equivalence ratio leads to higher engine instability and greater cycle-to-cycle variations (CCVs). Nevertheless, hydrogen flames, especially at low equivalence ratios and high pressures, present thermodiffusive instabilities that speed up combustion, changing significantly the flame development and possibly its variability. This work evaluates the hydrogen combustion and their CCVs in two single-cylinder diesel baseline H2ICEs (light-duty and medium-duty) and their influence on performance parameters.
Technical Paper

Combustion Stability Study with Low Cetane Number Diesel and Biodiesel with 2-EHN Addition under LTC Conditions during Cold/Warm Start and Steady State Conditions

2020-09-15
2020-01-2063
A single cylinder Diesel engine was used to study combustion stability changes from a cetane number improver: 2-EHN. It has been added to a low cetane number diesel and two biodiesels blends with 20 % of SME or RME. All fuels have been raised to a CN of 51 with 2-EHN. Those fuels have been compared to a reference diesel with a CN of 55. Cold and warm start have been recreated for measurements at three conditions: cranking, engine speed increase and idle. Engine coolant temperature has been set to 20°C and 80°C for cold and warm start respectively. 2-EHN effects on combustion stability have been monitored through the IMEP covariance. Under cold-start, only the low cetane number diesel showed combustion stabilities improvements with 2-EHN addition. Moreover, the combustion stability was better than the reference diesel and the heat release rate show an enhancement of the cold flame. On the contrary, the biodiesel fuels exhibited higher IMEP covariances.
Technical Paper

Study on the Effects on Diesel LTC Combustion of 2-EHN as Cetane Improver

2020-04-14
2020-01-1125
A single cylinder Diesel engine was used to study LTC combustion. We evaluated the 2-EthylHexyl Nitrate (2-EHN) as cetane number improver (CNI) distributed by VeryOne@ on the combustion of six diesel fuels. Tested fuels are a low Cetane Number (CN) diesel fuel (CN of 43.7) and two biodiesel mixed at 20% with the low Cetane number diesel fuel: Soybean oil Methyl Ester (B100 SME) and Rapeseed oil Methyl Ester (B100 RME). Each fuels doped with the 2-EHN were prepared to meet the minimum European CN, 51. LTC strategies could provide low NOx emission without thermal efficiency deterioration. The study investigated engine operation at loads of 2, 6 and 10 bar IMEP at engine speed of 1250 rpm, 1500 rpm and 2000 rpm and the impact against synthetic EGR up to 30%. The low-temperature decomposition of 2-EHN, resulting in the oxidation of the fuel, makes it possible to achieve a very low cycle-to-cycle variation of the IMEP even at very low load or at a very high rate of EGR.
Technical Paper

Exploring and Modeling the Chemical Effect of a Cetane Booster Additive in a Low-Octane Gasoline Fuel

2019-09-09
2019-24-0069
Increasing the internal combustion engine efficiency is necessary to decrease their environmental impact. Several combustion systems demonstrated the interest of low temperature combustion to move toward this objective. However, to ensure a stable combustion, the use of additives has been considered in a several studies. Amongst them, 2-Ethylhexyl nitrate (EHN) is considered as a good candidate for these systems but characterizing its chemical effect is required to optimize its use. In this study, its promoting effect (0.1 - 1% mol.) on combustion has been investigated experimentally and numerically in order to better characterize its behavior under different thermodynamic and mixture. Rapid compression machine (RCM) experiments were carried out at equivalence ratio 0.5 and pressure 10 bar, from 675 to 995 K. The targeted surrogate fuel is a mixture of toluene and n-heptane in order to capture the additive effect on both cool flame and main ignition.
Journal Article

Experimental Investigation and Modeling of Early Flame Propagation Stages in Operating Conditions Representative of Modern High Efficiency Spark Ignition Engines

2019-09-09
2019-24-0073
The present social context imposes effective reductions of transport greenhouse gases and pollutant emissions. To answer to this demand, car manufacturers adopted technologies such as downsizing, turbocharging, intense in-cylinder aerodynamics and diluted combustion process. In this context, to master mixture ignition is crucial to ensure an efficient heat release. To get to a clearer knowledge about the physics holding early stages of premixed mixture combustion, the PRISME institute in the framework of the French government research project ANR MACDOC generated a consistent experimental database to study ignition and spherical flame propagation processes in a constant volume vessel in laminar and turbulent environment.
Technical Paper

Generation and Oxidation of Soot due to Fuel Films Utilizing High Speed Visualization Techniques

2019-04-02
2019-01-0251
For a better understanding of how soot is generated due to fuel films, a constant volume vessel was used together with four visualization techniques due to their high spatial (2D) and time resolution: Schlieren, natural luminosity, diffused back illumination and OH* chemiluminescence. The analysis was performed keeping the injection pressure at 30 bar and changing the plate temperature on which the spray impacts: 80, 120, 160 and 200 °C. The fuel is a mixture of iso-octane, hexane, toluene and 1-methylnaphthalene, which presents similar properties to commercial gasoline. Valuable insights were gained from the results that infer the real nature of the radiation observed during combustion events in gasoline direct injection (GDI) engines due to the presence of a fuel films which are conventionally described as “pool fires”. The results show that the highest quantity of soot is generated between plate temperatures of 80 and 120 °C.
Journal Article

Mechanisms of Enhanced Reactivity with Ozone Addition for Advanced Compression Ignition

2018-04-03
2018-01-1249
Mechanisms responsible for enhanced charge reactivity with intake added ozone (O3) were explored in a single-cylinder, optically accessible, research engine configured for low-load advanced compression ignition (ACI) experiments. The influence of O3 concentration (0-40 ppm) on engine performance metrics was evaluated as a function of intake temperature and start of injection for the engine fueled by iso-octane, 1-hexene, or a 5-component gasoline surrogate. For the engine fueled by either the gasoline surrogate or 1-hexene, 25 ppm of added O3 reduced the intake temperature required for stable combustion by 65 and 80°C, respectively. An ultraviolet (UV) light absorption diagnostic was also used to measure crank angle (CA) resolved in-cylinder O3 concentrations for select motored and fired operating conditions. The O3 measurements were compared to results from complementary 0D chemical kinetic simulations that utilized detailed chemistry mechanisms augmented with O3 oxidation chemistry.
Technical Paper

Ammonia-Hydrogen Blends in Homogeneous-Charge Compression-Ignition Engine

2017-09-04
2017-24-0087
Ammonia and hydrogen can be produced from water, air and excess renewable electricity (Power-to-fuel) and are therefore a promising alternative in the transition from fossil fuel energy to cleaner energy sources. An Homogeneous-Charge Compression-Ignition (HCCI) engine is therefore being studied to use both fuels under a variable blending ratio for Combined Heat and Power (CHP) production. Due to the high auto-ignition resistance of ammonia, hydrogen is required to promote and stabilize the HCCI combustion. Therefore the research objective is to investigate the HCCI combustion of varying hydrogen-ammonia blending ratios in a 16:1 compression ratio engine. A specific focus is put on maximizing the ammonia proportion as well as minimizing the NOx emissions that could arise from the nitrogen contained in the ammonia. A single-cylinder, constant speed, HCCI engine has been used with an intake pressure varied from 1 to 1.5 bar and with intake temperatures ranging from 428 to 473 K.
Technical Paper

Potential of Ozone to Enable Low Load Operations of a Gasoline Compression Ignition (GCI) Engine

2017-03-28
2017-01-0746
Gasoline Compression Ignition (GCI) engines based on Gasoline Partially Premixed Combustion (GPPC) showed potential for high efficiency and reduced emissions of NOx and Soot. However, because of the high octane number of gasoline, misfire and unstable combustion dramatically limit low load operating conditions. In previous work, seeding the intake of the engine with ozone showed potential for increasing the fuel reactivity of gasoline. The objective of this work was to evaluate the potential of ozone to overcome the low load limitations of a GCI engine. Experiments were performed in a single-cylinder light-duty CI engine fueled with 95 RON gasoline. Engine speed was set to 1500 rpm and intake pressure was set to 1 bar in order to investigate typical low load operating conditions. In the first part of the work, the effect of ozone on gasoline autoignition was investigate while the start of the fuel injection varied between 60 CAD and 24 CAD before TDC.
Technical Paper

Ozone Seeding Effect on the Ignition Event in HCCI Combustion of Gasoline-Ethanol Blends

2017-03-28
2017-01-0727
The transportation sector adds to the greenhouse gas emissions worldwide. One way to decrease this impact from transportation is by using renewable fuels. Ethanol is a readily available blend component which can be produced from bio blend­stock, currently used blended with gasoline from low to high concentrations. This study focuses on a high octane (RON=97) gasoline blended with 0, 20, and 50, volume % of ethanol, respectively. The high ethanol blended gasoline was used in a light duty engine originally designed for diesel combustion. Due to the high octane rating and high ignition resistance of the fuel it required high intake temperatures of 443 K and higher to achieve stable combustion in in homogeneously charged compression ignition (HCCI) combustion operation at low load. To enable combustion with lower intake temperatures more commonly used in commercial vehicles, ozone was injected with the intake air as an ignition improver.
Technical Paper

Application of an Ozone Generator to Control the Homogeneous Charge Compression Ignition Combustion Process

2015-09-06
2015-24-2456
The present investigation examines a new way to control the homogeneous charge compression ignition (HCCI) process. An ozone generator was set up to seed the intake of a single-cylinder engine with low concentrations of ozone. Two kinds of gas supply were tested: an oxygen supply and an air supply; as well as two kinds of injection: a plenum injection and an injection inside one of the intake pipes. The results showed that air can easily be used and that the second injection mode is the best way to achieve an on-road application. Moreover, experiments demonstrated that each combustion parameter such as the phasing, the indicated mean effective pressure and the pollutants can be controlled by varying the capacity of the ozone generator. Then, from experimental results, two dynamic control approaches on the maximum pressure phasing were proposed.
X