Refine Your Search

Topic

Search Results

Author:
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Zero Dimensional Turbulence and Heat Transfer Phenomenological Model for Pre-Chamber Gas Engines

2018-04-03
2018-01-1453
Most of the phenomena that occur during the high pressure cycle of a spark ignition engine are highly influenced by the gas temperature, turbulence intensity and turbulence length scale inside the cylinder. For a pre chamber gas engine, the small volume and the high surface-to-volume ratio of the pre chamber increases the relative significance of the gas-to-wall heat losses, the early flame kernel development and the wall induced quenching; all of these phenomena are associated up to a certain extent with the turbulence and temperature field inside the pre chamber. While three-dimensional (3D) computational fluid dynamics (CFD) simulations can capture complex phenomena inside the pre chamber with high accuracy, they have high computational cost. Quasi dimensional models, on the contrary, provide a computationally inexpensive alternative for simulating multiple operating conditions as well as different geometries.
Journal Article

Analysis of Averaging Methods for Large Eddy Simulations of Diesel Sprays

2015-09-06
2015-24-2464
Large Eddy Simulations (LES) provide instantaneous values indispensable to conduct statistical studies of relevant fluctuating quantities for diesel sprays. However, numerous realizations are generally necessary for LES to derive statistically averaged quantities necessary for validation of the numerical framework by means of measurements and for conducting sensitivity studies, leading to extremely high computational efforts. In this context, the aim of this work is to explore and validate alternatives to the simulation of 20-50 single realizations at considerably lower computational costs, by taking advantage of the axisymmetric geometry and the Quasi-Steady-State (QSS) condition of the near nozzle flow at a certain time after start-of-injection (SOI).
Technical Paper

Assessment of Two Premixed LES Combustion Models in an Engine-Like Geometry

2018-04-03
2018-01-0176
Large Eddy Simulation (LES) of premixed turbulent combustion in a confined cylinder setup at engine relevant conditions has been carried out for three different initial turbulence intensities, mimicking different flame propagation regimes. Direct Numerical Simulation (DNS) of the setup under investigation provides the reference data to be compared against. The DNS fields have been filtered on the LES grid and are used as initial conditions for the LES at onset of combustion, guaranteeing a direct comparability of the single realizations between the modeled and reference data. Two different combustion models, the G-Equation and CMC-premixed (Conditional Moment Closure) are compared with respect to their predictive capabilities as well as their usability and computational cost. While the G-Equation is a widely adopted approach for industrial applications and usually relies on a tunable turbulent flame speed closure, the novel LES-CMC comes as a tuning parameter free model.
Technical Paper

CFD-Simulation of Ignition and Combustion in Lean Burn Gas Engines

2016-04-05
2016-01-0800
In this study, the ignition and combustion process in a lean burn, spark-ignited stationary gas engine was investigated using a level-set (G-equation) combustion model in the context of Reynolds-averaged Navier-Stokes (RANS) simulations. An ignition model based on Herweg and Maly [1] and its coupling with the G-equation combustion model was implemented in the framework of the STARCD/es-ICE solver. A first validation was performed by means of spherically expanding methane/air flame measurements in an optically accessible spherical combustion bomb at elevated pressure by Lawes et al. [2]: predictions of the kernel size and the flame expansion are in good agreement with the experimental data at both stoichiometric and lean conditions. The model was subsequently applied to study combustion in a premixed lean burn stationary gas engine with a displacement volume of roughly two liters, ignited by means of a centrally located “G-type” spark plug.
Technical Paper

CMC Model Applied to Marine Diesel Spray Combustion: Influence of Fuel Evaporation Terms

2014-10-13
2014-01-2738
This study presents an application of the conditional moment closure (CMC) combustion model to marine diesel sprays. In particular, the influence of fuel evaporation terms has been investigated for the CMC modeling framework. This is motivated by the fact that substantial overlap between the dense fuel spray and flame area is encountered for sprays in typical large two-stroke marine diesel engines which employ fuel injectors with orifice diameters of the order of one millimeter. Simulation results are first validated by means of experimental data from the Wärtsilä optically accessible marine spray combustion chamber in terms of non-reactive macroscopic spray development. Subsequently, reactive calculations are carried out and validated in terms of ignition delay time, ignition location, flame lift-off length and temporal evolution of the flame region. Finally, the influence of droplet terms on spray combustion is analyzed in detail.
Technical Paper

Comparative Study of Ignition Systems for Lean Burn Gas Engines in an Optically Accessible Rapid Compression Expansion Machine

2013-09-08
2013-24-0112
Ignition systems for large lean burn gas engines are challenged by large energy deposition requirements to ensure stable and reliable inflammation of the premixed charge. In this study, two different ignition systems are investigated experimentally: ignition by means of injecting a small amount of diesel spray and its subsequent autoignition is compared to the ignition with an un-scavenged pre-chamber spark plug over a wide range of engine relevant conditions such as methane equivalence ratios and thermomechanical states. The ignition behavior as well as the combustion phase of the two systems is investigated using an optically accessible Rapid Compression Expansion Machine (RCEM). Filtered OH-chemiluminescence images of the ignition and combustion were taken with a UV intensified high speed camera through the piston window.
Journal Article

Comparison and Sensitivity Analysis of Turbulent Flame Speed Closures in the RANS G-Equation Context for Two Distinct Engines

2016-10-17
2016-01-2236
Three-dimensional reactive computational fluid dynamics (CFD) plays a crucial role in IC engine development tasks complementing experimental efforts by providing improved understanding of the combustion process. A widely adopted combustion model in the engine community for (partially) premixed combustion is the G-Equation where the flame front is represented by an iso-level of an arbitrary scalar G. A convective-reactive equation for this iso-surface is solved, for which the turbulent flame speed ST must be provided. In this study, the commonly used and well-established Damköhler approach is compared to a novel correlation, derived from an algebraic closure for the scalar dissipation of reaction progress as proposed by Kolla et al. [1].
Technical Paper

Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine

2021-09-05
2021-24-0041
A heavy-duty diesel engine (ETH-LAV single cylinder MTU396 heavy duty research engine) was simulated by RANS and advanced reacting flow models to gain insight into its soot and NOx emissions. Due to symmetry, a section of the engine containing a single injector-hole was simulated. Dodecane was used as a surrogate to emulate the evaporation properties of diesel and a 22-step reaction mechanism for n-heptane was used to describe combustion. The Conditional Moment Closure (CMC) method was used as the combustion model in two ways. In a more conventional modelling approach, CMC was fully interfaced with the CFD and a two-equation model was employed for determining soot while the extended Zeldovich mechanism was used for NOx. In a second approach called the Imperfectly Stirred Reactor (ISR) method, the CMC equation was integrated over space and the previous RANS-CMC solution was further analysed in a post-processing step with the focus on soot.
Technical Paper

Conditional Moment Closure Modelling for Dual-Fuel Combustion Engines with Pilot-Assisted Compression Ignition

2017-10-08
2017-01-2188
Dual-fuel combustion is an attractive approach for utilizing alternative fuels such as natural gas in compression-ignition internal combustion engines. In this approach, pilot injection of a more reactive fuel provides a source of ignition for the premixed natural gas/air. The overall performance combines the high efficiency of a compression-ignition engine with the relatively low emissions associated with natural gas. However the combustion phenomena occurring in dual-fuel engines present a challenge for existing turbulent combustion models because, following ignition, flame propagates through a partially-reacted and inhomogeneous mixture of the two fuels. The objective of this study is to test a new modelling formulation that combines the ability of the Conditional Moment Closure (CMC) approach to describe autoignition of fuel sprays with the ability of the G-equation approach to describe the subsequent flame propagation.
Journal Article

Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations

2013-09-08
2013-24-0004
The combustion of gaseous fuels like methane in internal combustion engines is an interesting alternative to the conventional gasoline and diesel fuels. Reasons are the availability of the resource and the significant advantage in terms of CO2 emissions due to the beneficial C/H ratio. One difficulty of gaseous fuels is the preparation of the gas/air mixtures for all operation points, since the volumetric energy density of the fuel is lower compared to conventional liquid fuels. Low-pressure port-injected systems suffer from substantially reduced volumetric efficiencies. Direct injection systems avoid such losses; in order to deliver enough fuel into the cylinder, high pressures are however needed for the gas injection which forces the fuel to enter the cylinder at supersonic speed followed by a Mach disk. The detailed modeling of these physical effects is very challenging, since the fluid velocities and pressure and velocity gradients at the Mach disc are very high.
Journal Article

Development and Experimental Validation of a Fast Spray Ignition Model for Diesel Engines Using Insights from CFD Spray Calculations

2017-03-28
2017-01-0812
Modern Diesel engines have become ever more complex systems with many degrees of freedom. Simultaneously, with increasing computational power, simulations of engines have become more popular, and can be used to find the optimum set up of engine operation parameters which result in the desired point in the emission-efficiency trade off. With increasing number of engine operation parameter combinations, the number of calculations increase exponentially. Therefore, adequate models for combustion and emissions with limited calculation costs are required. For obvious reasons, the accuracy of the ignition timing is a key point for the following combustion and emission model quality. Furthermore, the combination of mixing and chemical processes during the ignition delay is very challenging to model in a fast way for a wide range of operation conditions.
Technical Paper

Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge using a Rapid Compression Expansion Machine

2012-04-16
2012-01-0825
The behavior of spray auto-ignition and combustion of a diesel spray in a lean premixed methane/air charge was investigated. A rapid compression expansion machine with a free-floating piston was employed to reach engine-relevant conditions at start of injection of the micro diesel pilot. The methane content in the lean ambient gas mixture was varied by injecting different amounts of methane directly into the combustion chamber, the ambient equivalence ratio for the methane content ranged from 0.0 (pure air) to 0.65. Two different nozzle tips with three and six orifices were employed. The amount of pilot fuel injected ranged between 0.8 and 1.8 percent of the total energy in the combustion chamber. Filtered OH chemiluminescence images of the combustion were taken with a UV-intensified high-speed camera through the optical access in the piston.
Technical Paper

Experimental Validation of a Global Reaction Model for a Range of Gasolines and Kerosenes under HCCI Conditions

2011-09-11
2011-24-0024
Compact and computationally efficient reaction models capable of accurately predicting ignition delay and heat release rates are a prerequisite for the development of strategies to control and optimize HCCI engines. In particular for full boiling range fuels exhibiting two-stage ignition a tremendous demand exists in the engine development community. To this end, in a previous investigation, a global reaction mechanism was developed and fitted to data from shock tube experiments for n-heptane and five full boiling range fuels. By means of a genetic algorithm, for each of these fuels, a set of reaction rate parameters (consisting of pre-exponential factors, activation energies and concentration exponents) has been defined, without any change to the model form.
Journal Article

Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior

2017-09-04
2017-24-0094
Despite significant benefits in terms of the ignition enhancement, the strength and timing of the turbulent flame jets subsequently issuing into the main chamber strongly depend on the pre-chamber combustion process and, thus, are sensitive to the specific engine operating conditions it experienced. This poses considerable difficulties in optimizing engine operating conditions as well as controlling engine performance. This paper investigates the influence of engine operating conditions on the pre-chamber combustion event using both experimental and numerical methods. A miniaturized piezo-electric pressure transducer was designed to be placed inside the engine cylinder head to record the pre-chamber inner volume pressure, in addition to conventional pressure indication inside the main chamber.
Journal Article

Extension of the Phenomenological 3-Arrhenius Auto-Ignition Model for Six Surrogate Automotive Fuels

2016-04-05
2016-01-0755
An existing three-stage ignition delay model which has seen successful application to Primary Reference Fuels (PRFs) has been extended to six surrogate fuels which constitute potential candidates for future Homogeneous Charge Compression Ignition (HCCI) engines. The fuels include petroleum-derived and oxygenated components and can be divided into low, intermediate and high cetane number groups. A new methodology to obtain the model parameters is presented which relies jointly on simulation and experimental data: in a first step, constant volume adiabatic reactor simulations using chemical kinetic mechanisms are performed to generate ignition delays for a very wide range of conditions, namely variations in equivalence ratio, Exhaust Gas Recirculation (EGR), pressure and temperature.
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Journal Article

Fundamental Aspects of Jet Ignition for Natural Gas Engines

2017-09-04
2017-24-0097
Large-bore natural gas engines may use pre-chamber ignition. Despite extensive research in engine environments, the exact nature of the jet, as it exits the pre-chamber orifice, is not thoroughly understood and this leads to uncertainty in the design of such systems. In this work, a specially-designed rig comprising a quartz pre-chamber fit with an orifice and a turbulent flowing mixture outside the pre-chamber was used to study the pre-chamber flame, the jet, and the subsequent premixed flame initiation mechanism by OH* and CH* chemiluminescence. Ethylene and methane were used. The experimental results are supplemented by LES and 0D modelling, providing insights into the mass flow rate evolution at the orifice and into the nature of the fluid there. Both LES and experiment suggest that for large orifice diameters, the flow that exits the orifice is composed of a column of hot products surrounded by an annulus of unburnt pre-chamber fluid.
Journal Article

Generation of Turbulence in a RCEM towards Engine Relevant Conditions for Premixed Combustion Based on CFD and PIV Investigations

2017-09-04
2017-24-0043
The interaction of turbulent premixed methane combustion with the surrounding flow field can be studied using optically accessible test rigs such as a rapid compression expansion machine (RCEM). The high flexibility offered by such a test rig allows its operation at various thermochemical conditions at ignition. However, limitations inherent to such test rigs due to the absence of an intake stroke do not allow turbulence production as found in IC-engines. Hence, means to introduce turbulence need to be implemented and the relevant turbulence quantities have to be identified in order to enable comparability with engine relevant conditions. A dedicated high-pressure direct injection of air at the beginning of the compression phase is considered as a measure to generate adjustable turbulence intensities at spark timing and during the early flame propagation.
Journal Article

Ignition Delays of Different Homogeneous Fuel-air Mixtures in a Rapid Compression Expansion Machine and Comparison with a 3-Stage-ignition Model Parameterized on Shock Tube Data

2013-10-14
2013-01-2625
An optically accessible Rapid Compression Expansion Machine (RCEM) has been used to investigate the homogeneous auto-ignition of five candidate fuels for Homogenous Charge Compression Ignition (HCCI) combustion. Two technical fuels (Naphthas) and three primary reference fuels (PRF), (n-heptane, PRF25 and PRF50) were examined. The Cetane Numbers (CN) of the fuels range from 35 to 56. The PRF25 and PRF50 were selected in order to approximately match the CN of the two Naphthas. Variation of the operating parameters has been performed, in regard to initial charge temperature of 383, 408, and 433K, exhaust gas recirculation (EGR) rate of 0%, 25%, and 50%, and equivalence ratio of 0.29, 0.38, 0.4, 0.53, 0.57, and 0.8. Pressure indication measurements, OH-chemiluminescence imaging, and passive spectroscopy were simultaneously implemented.
X