Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Improvement of CO Oxidation Performance by Controlling Pd State in DOC

2018-04-03
2018-01-1256
Diesel oxidation catalysts (DOCs) combining the functions of Pd and Pt-Pd alloys have been used in practice to satisfy the strict exhaust emission regulations that have been specified for passenger cars in recent years. Pd is an indispensable component in DOCs because it exhibits superior oxidation activity for CO and HC. To reduce the amount of precious metal used and to improve robustness, it is important to control the electronic state and gas adsorption characteristics of Pd and PdOx during catalytic reactions.In this study, by investigating the CO adsorption behavior of Pd, it was observed that Pd supported on a CeO2/ZrO2 mixed-oxide material (CZ) showed a preferable CO adsorption state and better CO light-off performance. Pd in Pd/CZ became metallic with increasing reaction time, and the CO oxidation performance of Pd/CZ decreased. This change in activity was correlated with CO adsorption on Pd changing from linear-type to bridge-type adsorption.
Technical Paper

Detailed Mechanism of S Poisoning and De-Sulfation Treatment of Cu-SCR Catalyst

2017-03-28
2017-01-0944
Modern diesel emission control systems often use Urea Selective Catalytic Reduction (Urea-SCR) for NOx control. One of the most active SCR catalysts is based on Cu-zeolite, specifically Cu-Chabazite (Cu-CHA), also known as Cu-SSZ-13. The Cu-SCR catalyst exhibits high NOx control performance and has a high thermal durability. However, its catalytic performance deteriorates upon long-term exposure to sulfur. This work describes our efforts to investigate the detailed mechanism of poisoning of the catalyst by sulfur, the optimum conditions required for de-sulfation, and the recovery of catalytic activity. Density functional theory (DFT) calculations were performed to locate the sulfur adsorption site within the Cu-zeolite structure. Analytical characterization of the sulfur-poisoned catalyst was performed using Extreme Ultraviolet Photoelectron Spectroscopy (EUPS) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).
Journal Article

Surface Conductivity Measurement of Catalyst Materials by EUPS and Its Correlation to Catalyst Performance

2016-04-05
2016-01-0911
Commercial three way catalysts (TWC) are designed to eliminate HC, CO and NOx pollutants emitted from gasoline powered internal combustion engines. TWC have been optimized over many years to meet ever more stringent emission regulations. It has long been speculated that surface electrical conductivity may be a key parameter in controlling catalytic activity, however until now it has not been possible to reliably measure this physical parameter on a catalytic surface. In this study, the surface electrical conductivity of catalyst powders, such as Rh/ CeO1-x-ZrxO2, Rh/ZrO2 and Rh/Al2O3, were measured by EUPS (Extreme Ultraviolet excited Photoelectron Spectroscopy). Then the measured electrical conductivity was compared with catalyst performance from CO-NO and water gas shift reactions which are important for controlling automobile exhaust emissions from gasoline vehicles.
Technical Paper

Detailed Analysis of Particulate Matter Emitted from Biofueled Diesel Combustion with High EGR

2009-04-20
2009-01-0483
Difference of engine combustion characteristics, species and amount of exhaust gas and PM (particulate matter consisted of SOF and Soot and Ash), and especially PM oxidation characteristics were studied when diesel fuel or bio-fuel, here PME (palm oil methyl ester) as an example, was used as a fuel. The fueling rate was adjusted to obtain the same torque for both fuels and engine was operated under several range of EGR (Exhaust Gas Recirculation) ratio. Under such conditions, PME showed shorter ignition delay time and lower R.H.R (rate of heat release) under 0-40% EGR ratio. With respect to engine exhaust gas species, CO, NO, THC and HCHO, CH3CHO concentration was almost the same when the EGR ratio is higher than 35% (Intake-Air/Fuel: A/F=20). However, PME also showed lower exhaust gas emission when the EGR ratio is higher than 30%.
X