Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

A New Approach to the Test, Assessment and Optimization of Robust Electrical Distribution Systems

2013-04-08
2013-01-0396
Both the electrical portion of the powertrain and the rising number of auxiliary systems will considerably increase the electrical power requirements in future vehicles. In addition, multiple voltage supply levels will enhance the complexity of the electrical distribution system (EDS), while strict cost, weight, packaging, and safety constraints must be upheld, posing serious design challenges in terms of robustness, reliability and energy efficiency. Currently, a self-contained integral test or evaluation of the EDS is normally not applied. For such a purpose, quantitative quality criteria are introduced here which allow a comparative assessment of an EDS by addressing the dynamic and static stability of the supply voltage, the reliability of the fusing system, and the ability to provide the required electrical power. The presented approach uses both precisely-defined test scenarios and a comprehensive EDS test bench.
Technical Paper

Electrical Power System Assessment Method Based on Bayesian Networks

2013-04-08
2013-01-0399
The impact of the design of automotive electrical distribution systems (EDS) is becoming more and more significant with the continuous integration of new safety-relevant functions and the substitution of mechanical systems having reached a high degree of robustness. The introduction of hybrid and electric vehicles amplify this trend and lead to the design of even more complex electrical networks with multiple voltage levels and new challenges. To assess electrical power systems with respect to their ability to supply the involved electrical consumers in various driving and consuming situations at a high level of reliability and voltage stability simulation studies, bench testing and driving tests are conducted. However, a sustained strategy to define relevant consuming and driving situations in order to test the EDS under consistent loading conditions is missing.
Technical Paper

A Generic Modeling Approach for Automotive Power Net Consumers

2012-04-16
2012-01-0924
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future automotive electrical networks. Both reliability and performance must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. Often, in order to cope with these requirements, merely an upgrade of the existing wiring harness design is used, resulting in additional complexity, weight, and cost [3]. A characterization of the wiring harness and its electrical consumers facilitates a systematic optimization approach aimed at designing new automotive power networks [1, 5]. Measurement and analysis methods to characterise the thermal behaviour of the wiring harness have been presented and discussed in a previous paper [4] This paper presents and compares two methods aimed at modeling the electrical behavior of consumers at various voltages and temperatures.
Technical Paper

Characterization and Test of Automotive Electrical Power Networks

2009-04-20
2009-01-1093
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future vehicle power nets. Reliability and performance of the electrical network must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. This paper presents a test bench for automotive electrical networks based on a hardware-in-the-loop (HiL) platform. The test bench is used to assess the power and temperature behavior of the wiring harness and the connected power consumers. This characterisation facilitates the development of new tailored automotive electrical networks to meet the increased requirements while efficiently using the available resources.
X