Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Relationship between Material Properties and Local Formability of DP980 Steels

2012-04-16
2012-01-0042
A noticeable degree of inconsistent forming behaviors has been observed for the 1st generation advanced high strength steels (AHSS) in production, and they appear to be associated with the inherent microstructural-level inhomogeneities for various AHSS. This indicates that the basic material property requirements and screening methods currently used for the mild steels and high strength low alloys (HSLA) are no longer sufficient for qualifying today's AHSS. In order to establish more relevant material acceptance criteria for AHSS, the fundamental understandings on key mechanical properties and microstructural features influencing the local formability of AHSS need to be developed. For this purpose, in this study, DP980 was selected as model steels and eight different types of DP980 sheet steels were acquired from various steel suppliers.
Journal Article

Loading Path Dependence of Forming Limit Diagram of a TRIP800 Steel

2011-04-12
2011-01-0019
In this paper, the microstructure-based finite element modeling method is used in investigating the loading path dependence of formability of transformation induced plasticity (TRIP) steels. For this purpose, the effects of different loading path on the forming limit diagrams (FLD) of TRIP steels are qualitatively examined using the representative volume element (RVE) of a commercial TRIP800 steel. First, the modeling method was introduced, where a combined isotropic/kinematic hardening rule is adopted for the constituent phases in order to correctly describe the cyclic deformation behaviors of TRIP steels during the forming process with combined loading paths which may include the unloading between the two consecutive loadings. Material parameters for the constituent phases remained the same as those in the authors' previous study [ 1 ] except for some adjustments for the martensite phase due to the introduction of the new combined hardening rule.
Technical Paper

Effects of Forming Induced Phase Transformation on Crushing Behavior of TRIP Steel

2010-04-12
2010-01-0216
In this paper, results of finite element crash simulation are presented for a TRIP steel side rail with and without considering the phase transformation during forming operations. A homogeneous phase transformation model is adapted to model the mechanical behavior of the austenite-to-martensite phase. The forming process of TRIP steels is simulated with the implementation of the material model. The distribution and volume fraction of the martensite in TRIP steels may be greatly influenced by various factors during forming process and subsequently contribute to the behavior of the formed TRIP steels during the crushing process. The results indicate that, with the forming induced phase transformation, higher energy absorption of the side rail can be achieved. The phase transformation enhances the strength of the side rail.
Technical Paper

Characterization of the Fracture Toughness of TRIP 800 Sheet Steels Using Microstructure-Based Finite Element Analysis

2009-04-20
2009-01-0800
Recently, several studies conducted by automotive industry revealed the tremendous advantages of Advanced High Strength Steels (AHSS). TRansformation Induced Plasticity (TRIP) steel is one of the typical representative of AHSS. This kind of materials exhibits high strength as well as high formability. Analyzing the crack behaviour in TRIP steels is a challenging task due to the microstructure level inhomogeneities between the different phases (ferrite, bainite, austenite, martensite) that constitute these materials. This paper aims at investigating the fracture resistance of TRIP steels. For this purpose, a micromechanical finite element model is developed based on the actual microstructure of a TRIP 800 steel. Uniaxial tensile tests on TRIP 800 sheet notched specimens were also conducted and tensile properties and R-curves (Resistance curves) were determined.
Journal Article

Applicability of Micromechanics Model Based on Actual Microstructure for Failure Prediction of DP Steels

2009-04-20
2009-01-0469
In this paper, various micromechanics models based on actual microstructures of DP steels are examined in order to determine the reasonable range of martensite volume fraction where the methodology described in this study can be applied. For this purpose, various micromechanics-based finite element models are first created based on the actual microstructures of DP steels with different martensite volume fractions. These models are, then, used to investigate the influence of ductility of the constituent ferrite and martensite phases and also the influence of voids in the ferrite phase on the overall ductility of DP steels.
X