Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

An Efficient Lift Control Technique in Electro-hydraulic Camless Valvetrain Using Variable Speed Hydraulic Pump

2011-04-12
2011-01-0940
Significant improvement in fuel consumption, torque delivery and emission could be achieved through flexible control of the valve timings, duration and lift. In most existing electro-hydraulic variable valve actuation systems, the desired valve lift within every engine cycle is achieved by accurately controlling of the solenoid-valve opening interval; however, due to slow response time, precision control of these valves is difficult particularly during higher engine speeds. In this paper a new lift control strategy is proposed based on the hydraulic supply pressure and flow control. In this method, in order to control the peak valve lift, the hydraulic pump speed is precisely controlled using a two-input gearbox mechanism. This eliminates the need for precision control of the solenoid valves opening interval within every cycle.
Technical Paper

A Novel Air Hybrid Engine Configuration Utilizing Cam-Based Valvetrain

2011-04-12
2011-01-0871
In this work, a new air hybrid engine configuration is introduced in which cam-based valvetrain along with three-way and unidirectional valves make the implementation of different air hybrid engine operational modes possible. This configuration simplifies the air hybrid engine valvetrain significantly and relaxes the necessity of using fully flexible valvetrain in air hybrid engines. Utilizing the proposed configuration allows compression braking (CB), air motor (AM), startup and conventional modes of operation to be realized. The proposed configuration is modeled in GT-Power and the deceleration of a typical vehicle, utilizing only regenerative braking system, is simulated. The efficiency of the system in storing the vehicle's kinetic energy is determined using second law definition for efficiency. The stored energy can be used to either start up the engine or run the off-engine accessories. These two modes are studied and compared.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
X