Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Leveraging DOConFilter to Improve Exhaust System Packaging

2024-04-09
2024-01-2131
Diesel Particulate Filters (DPF) made of cordierite are generally used for diesel engine aftertreatment systems in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. PM/PN and NOx emission regulations will become more stringent worldwide, as represented by CARB2027 and Euro7. Technologies that can meet these strict regulations are required. As a result, aftertreatment systems have become more complex with limited space. Recently, off-highway OEMs have been interested in downsizing the aftertreatment system using concepts such as DOConFilter in an effort to reduce the size of the exhaust system. DOConFilter can effectively replace DOC + CSF or DOC + bare DPF systems with a single zone coated particulate filter. DOConFilter systems have an increased amount of coating compared to CSF as higher-filtration filters will become the norm. An undesirable increase in pressure drop is expected by adopting this new technology.
Technical Paper

Gasoline Particulate Filter with Membrane Technology to Achieve the Tight PN Requirement

2023-04-11
2023-01-0394
The LDV gasoline emission regulation is set to be tightened for Euro7. In particular, the particulate number (PN) requirement has been significantly tightened requiring a GPF with extra - high filtration efficiency to meet the target requirement. In order to meet the stricter PN requirements, GPF substrate material improvement is necessary. However, conventional GPF material improvement for high filtration efficiency will increase the filter backpressure significantly. The relationship between pressure drop and CO2 emission is difficult to quantify but high pressure drop can potentially increase the CO2 emission. Therefore, Membrane Technology (MT) is the key to break through the trade-off between filtration performance and pressure drop. MT is thin and dense layer of small grains applied on the GPF surface. MT application can increase particulate filtration efficiency significantly with minimal pressure drop increase.
Journal Article

New Generation Diesel Particulate Filter for Future Euro7 Regulation

2023-04-11
2023-01-0389
Diesel Particulate Filters (DPF) are becoming mandatory for many Heavy Duty Vehicle (HDV) and Non Road Mobile Machinery (NRMM) applications as the requirement for particulate filtration performance has increased over this past decade. In a previous study, a new generation of cordierite DPF was developed to meet the latest major emission regulations; PN-PEMS requirement for EuroVI StepE, while maintaining a lower pressure drop and high ash capacity. Despite the improvements made in the latest generation DPF material, the introduction of tighter particulate regulations demands further improvement in DPF technology. More specifically, PN emission limits for Euro7 under wide operation conditions in conjunction with PN down to 10nm, as described in the proposal from Consortium for Ultra Low Vehicle Emission (CLOVE), requires further improvement in PN filtration performance. Pressure drop, which may negatively influence the CO2 emissions, remains a key performance criteria.
Technical Paper

Potential of a Low Pressure Drop Filter Concept for Direct Injection Gasoline Engines to Reduce Particulate Number Emission

2012-04-16
2012-01-1241
The automotive industry is currently evaluating the gasoline particulate filter (GPF) as a potential technology to reduce particulate emissions from gasoline direct injection (GDI) engines. In this paper, several GPF design measures which were taken to obtain a filter with lower pressure drop when compared to our previous concept will be presented. Based on engine test bench and vehicle test results, it was determined some soot will accumulate on the GPF walls, resulting in an increase in pressure drop. However, the accumulated soot will be combusted under high temperature and high O₂ concentration conditions. In a typical vehicle application, passive regeneration will likely occur and a cycle of soot accumulation and combustion might be repeated in the actual driving conditions.
Technical Paper

New Particulate Filter Concept to Reduce Particle Number Emissions

2011-04-12
2011-01-0814
Gasoline Direct Injection (GDI) engines achieve better fuel economy but have the drawback of increased Particulate Matter (PM) emissions. As known from diesel engine applications particulate filters are an effective PM reduction device which is expected to be effective for reduction of particulates emitted by GDI engines as well. For this investigation new filter concepts especially designed for GDI applications are proposed. Filtration efficiency, pressure drop and regeneration performance were verified by cold flow bench and engine and chassis dynamometer testing. The experimental data were used to discuss the validity of these new filter design concepts.
Technical Paper

Study on Next Generation Diesel Particulate Filter

2009-04-20
2009-01-0292
Although diesel engines are superior to gasoline engines in terms of the demand to reduce CO2 emissions, diesel engines suffer from the problem of emitting Particulate Matter (PM). Therefore, a Diesel Particulate Filter (DPF) has to be fitted in the engine exhaust aftertreatment system. From the viewpoint of reducing CO2 emissions, there is a strong demand to reduce the exhaust system pressure drop and for DPF designs that are able to help reduce the pressure drop. A wall flow DPF having a novel wall pore structure design for reducing pressure drop, increasing robustness and increasing filtration efficiency is presented. The filter offers a linear relationship between PM loading and pressure drop, offering lower pressure drop and greater accuracy in estimating the accumulated PM amount from pressure drop. First, basic experiments were performed on small plate test samples having various pore structure designs.
X