Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Vibro-Acoustic Simulation of Intake Air Filter Using a Hybrid Modal Physical Coupling

2012-06-13
2012-01-1549
To assess the acoustic performance of modern automotive air filters, both the air-borne engine noise propagating through the interior air of the system (known as “pipe noise”) and the structure-borne noise radiated by the shell (“shell noise”) should be evaluated. In this paper, these different propagation paths are modeled using the finite element solver Actran on industrial test cases set-up by SOGEFI Air and Cooling Systems. The test-case is designed in such a way that the different propagation paths are assessed separately. First the engine acoustic pulsation that is transmitted through the filter's structure is considered. Second, the noise radiated by the shell excited by mechanical forces at the support location of the filter is evaluated. Finally, the acoustic transmission loss of the filter is predicted. The ingredients of the finite/infinite element models are reviewed in details in the paper.
Technical Paper

Vibro-Acoustic Simulation of Side Windows and Windshield Excited by Realistic CFD Turbulent Flows Including Car Cavity

2012-06-13
2012-01-1521
Nowadays, the interior vehicle noise due to the exterior aerodynamic field is an emerging topic in the acoustic design of a car. In particular, the turbulent aerodynamic pressure generated by the air flow encountering the windshield and the side windows represents an important interior noise source. As a consequence PSA Peugeot Citroën is interested in the numerical prediction of this aerodynamic noise generated by the car windows with the final objective of improving the products design and reducing this noise. In the past, several joint studies have been led by PSA and Free Field Technologies on this topic. In those studies an efficient methodology to predict the noise transmission through the side window has been set up. It relies on a two steps approach: the first step involves the computation of the exterior turbulent field using an unsteady CFD solver (in this case EXA PowerFlow).
Technical Paper

Vibro-Acoustic Simulation of Diesel Injection Ducts

2009-05-19
2009-01-2057
High pressure pipes of the diesel injection system seem to represent a weak point in terms of vibration and acoustic radiation of the whole injection system. Investigations have highlighted this phenomenon. The injectors induce acoustic waves which propagate in the viscous diesel contained in the injection pipes. A strong coupling can occur sometimes between these acoustic waves and the duct structural modes leading to intensive mechanical vibration and acoustic radiation; and sometimes to a possible failure of the pipe. Numerical simulations offer a good platform to predict such vibration and can be used in order to prevent any structural component failure and to decrease the resulting acoustic radiation. This paper presents a vibro-acoustic study performed with the finite element code ACTRAN to estimate which parameters play a role in this process and to provide some guidelines for avoiding problems.
X