Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Uncertainty Modeling for Aircraft Interior Noise - Composites Transmission Loss Optimization

2013-09-17
2013-01-2216
Although the aerospace production process is much better controlled than the process in other industries, it remains true that very small manufacturing variability exists in the geometrical parameters (flange thicknesses, hole diameters …) as well as in material properties.). Also the medical, nuclear, and even the toy industry manufacturers assemble their products to very controlled and tight tolerances, thus receiving the always more stringent quality requirements imposed by customers, regulations and safety. However, despite this clear trend towards improved quality in products, in the current design process, the effect of this manufacturing variability is usually compensated for by applying safety factors. This is not an ideal situation, as it may lead to slightly over-designed structures. A much more promising approach is to include probabilistic models of design variables into the mechanical simulation process.
Technical Paper

Performance Optimization for the XAM Hybrid Electric Vehicle Prototype

2012-04-16
2012-01-0773
Given the ever-increasing concern about environmental issues, the automotive industry is focusing on the development of innovative technologies that allow reduction of gas emissions and fuel consumption. Over the last few years, Hybrid Electric Vehicles (HEV) and Fuel Cell Vehicles have been developed as the most promising alternative solutions for many car manufacturers. Although fuel cells are considered as the best technology to have zero emission, the impact on infrastructure for a large-scale deployment is not yet solved. For this reason, HEV represent a valid shorter-term alternative that guarantees drastic emissions reduction and reduced fuel consumption with a much lower infrastructural impact. This paper reports the results obtained by the optimization of the emissions and fuel performances of a hybrid electric city vehicle for urban transportation named XAM (eXtreme Automotive Mobility). In order to optimize these performances, a 1D model of the vehicle has been created.
Technical Paper

Robustness Optimization of a Vehicle Suspension Durability Using Multibody Simulation

2009-04-20
2009-01-0205
Product designers worldwide are confronted with highly competitive though conflicting demands to deliver more complex products with increased quality in ever shorter development cycles. Optimizing design performance with purely test-based approaches is no longer an option and numerical simulation methods are widely used to model, assess and improve the product design based on virtual prototypes. However, variability in design parameters and in operating conditions leads to scatter in actual performances and must be incorporated in the simulation process to guarantee the robustness of the design. This paper presents the application of state-of-the-art robust design techniques to a vehicle suspension system. A multibody model of a vehicle with a virtual test ground has been created to predict the durability response of three main components of the suspension system.
X