Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Heavy Duty Emission Control System Analysis and Optimization for Future Demands

2015-04-14
2015-01-0997
This paper will review several different emission control systems for heavy duty diesel (HDD) applications aimed at future legislations. The focus will be on the (DOC+CSF+SCR+ASC) configuration. As of today, various SCR technologies are used on commercial vehicles around the globe. Moving beyond EuroVI/US10 emission levels, both fuel consumption savings and higher catalyst system efficiency are required. Therefore, significant system optimization has to be considered. Examples of this include: catalyst development, optimized thermal management, advanced urea dosing calibrations, and optimized SCR inlet NO:NO2 ratios. The aim of this paper is to provide a thorough system screening using a range of advanced SCR technologies, where the pros and cons from a system perspective will be discussed. Further optimization of selected systems will also be reviewed. The results suggest that current legislation requirements can be met for all SCR catalysts under investigation.
Journal Article

Development of SCR on High Porosity Substrates for Heavy Duty and Off-Road Applications

2014-04-01
2014-01-1521
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. There is a drive to reduce the overall packaging volume of the aftertreatment system for these applications. In addition, more active SCR catalysts will be needed as the applications become more challenging: e.g. lower temperatures and higher engine out NOx, for fuel consumption improvements. One approach to meet the challenges of reduced volume and/or higher NOx reduction is to increase the active site density of the SCR catalyst by coating higher amount of SCR catalyst on high porosity substrates (HPS). This approach could enable the reduction of the overall packaging volume while maintaining similar NOx conversion as compared to 2010/2013 systems, or improve the NOx reduction performance for equivalent volume and NH3 slip.
Journal Article

Removal of Hydrocarbons and Particulate Matter Using a Vanadia Selective Catalytic Reduction Catalyst: An Experimental and Modeling Study

2013-04-08
2013-01-1071
The use of vanadia selective catalytic reduction (V-SCR) catalysts for NOX reduction from diesel engine exhaust is well known. These catalysts are also active for hydrocarbon (HC) and particulate matter (PM) oxidation. This dual functionality (oxidation and reduction) of V-SCR catalysts can help certain applications achieve the legislative limits with an improved margin. In this work, NOX reduction, HC and CO oxidation over V-SCR were studied independently and simultaneously in microreactor tests. The effect of various parameters (HC speciation, concentration, ANR, and NO₂/NOX ratio) was investigated and the data was used to develop a kinetic model. Oxidation of CO, C₃H₆, and n-C₁₀H₂₂ is first order in CO/HC, while C₇H₈ oxidation is less than first order in C₇H₈. All these reactions were zero order in O₂. Oxidation activity decreased in order: C₇H₈ ≻ n-C₁₀H₂₂ ≻ C₃H₆ ≻ CO. HC oxidation was inhibited by NH₃.
X