Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

The Development of Real-time NOx Estimation Model and its Application

2013-04-08
2013-01-0243
To meet the stringent emission regulations on diesel engines, engine-out emissions have been lowered by adapting new combustion concepts such as low-temperature combustion and after-treatment systems have also been used to reduce tailpipe emissions. To optimize the control of both in-cylinder combustion and the efficiency of an after treatment system to reduce NOx, the amount of real-time NOx emissions should be determined. Therefore, in previous studies, the authors developed a real-time NO estimation model based on the in-cylinder pressure and the data available from the ECU during engine operation. The model was evaluated by comparing its results with a CFD model, which agreed well. Then, the model was implemented on an embedded system which allows real-time applications, and was verified on a 2.2-liter diesel engine. The model showed good agreement with the experimental results at various steady-state conditions and simple transient conditions.
Technical Paper

Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR

2011-04-12
2011-01-0400
Diesel engines are the most commonly used power train of the freight and public transportations in the world. From the viewpoint of global warming restraint, however, reduction of exhaust emissions from the diesel engine is urgent demand. Stringent emission regulations are being proposed with growing concern on NOx, PM and CO2 emissions. Future emission regulations require advanced emission control technologies, such as SCR(Selective Catalytic Reduction), LNT(Lean NOx Trap) and EGR(Exhaust Gas Recirculation). The EGR is a commonly used technique to reduce emission. In this study, a LP-EGR(Low Pressure Exhaust Gas Recirculation) system was investigated to evaluate its potential on emission reduction and fuel economy improvement, especially for a passenger diesel engine. A 3.0ℓ diesel engine equipped with the LP-EGR system was tested using an in-house control algorithm.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

The Emission Development for Lean NOx Trap System to Meet Tier2Bin5

2010-04-12
2010-01-0566
The LNT(Lean NOx Trap) system has been developed for NOx reduction to meet Tier2Bin5 by using 2.2ℓ-diesel engine which was recently introduced by Hyundai Kia Motor company. The compression ratio was adjusted to 15.5 and the trim size of the turbine was reduced to increase EGR rates. During the FTP75 mode test, the engine out NOx was reduced by about 30% compared to the standard engine. The rich mode combustion was developed for the wide operating range despite of the low compression ratio. It was accomplished by adjusting air and FIE system, mainly by increasing post2 injection quantity. The A/F (Air-to-Fuel) ratio was controlled by additional post2 injection quantity. The neutral transition between lean mode and rich mode combustion was completed. The noise and torque change could not be recognized by the drivers during the transition of combustion mode (lean-to-rich or rich-to-lean). The transition procedure was finished within about 1sec for the whole operating range.
Technical Paper

Development of Fuel Consumption of Passenger Diesel Engine with 2 Stage Turbocharger

2006-04-03
2006-01-0021
High specific power, additional hardware and mapping optimization was done to achieve reduction of fuel economy for current engine in this study. 2 stage turbocharger with serial configuration was best candidate not only for high specific power at high engine speed but also for increase of low end torque for current engine. This increase of low end torque is important for development of transient characteristic of vehicle. DoE and efficient EGR Cooler was applied for optimization of fuel economy. DoE was useful for optimization of fuel consumption affected by various fuel injection parameters. This DoE was also efficient for matching optimal fuel economy after change of engine hardware. Performance improvement of engine with 2 stage turbocharger VGT was evaluated and additional development of fuel economy was performed in this study.
X