Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Analysis of Homogeneity Factor for Diesel PCCI Combustion Control

2011-08-30
2011-01-1832
Owing to the potentials for low NOx and soot emissions, diesel PCCI combustion has been widely studied over last 10 years. However, its control is still the main barrier to constrain it to be applied on production engines. As there are a number of variables which affect the mixing and combustion process, it is difficult to develop control strategies with adequate functions but simple control order for implementing them. In the current research, a reformed Homogeneity Factor (HF) of in-cylinder charge has been explored as a control medium for simplifying the control model structure. Based on multi-pulse injection, the effects of operating parameters on the Homogeneity Factor and the relationship between Homogeneity Factor and mixing, combustion processes, emissions were investigated in a four-valve, direct-injection diesel engine by CFD simulation using KIVA-3V code coupled with detailed chemistry.
Technical Paper

An Investigation of Multiple-Injection Strategy in a Diesel PCCI Combustion Engine

2010-04-12
2010-01-1134
Multiple-injection strategy for Premixed Charge Compression Ignition (PCCI) combustion was investigated in a four-valve, direct-injection diesel engine by CFD simulation using KIVA-3V code [ 1 ] coupled with detailed chemistry. The effects of fuel splitting proportion, injection timing, included spray angles, injecting velocity, and the combined effects of injection parameters and EGR rate and boost pressure were examined. The mixing process and formations of soot emission and NO x were investigated as the main concern of the research. The results show that the fuel splitting proportion and the injection timing significantly impacted the combustion and emissions due to the considerable changes of the mixing process and fuel distribution in cylinder. The soot emission and unburned HC (UHC) were affected by included spray angles since the massive influences of the fuel distribution resulted from the change in spray targeting point on piston bowl.
X