Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

An Experimental Study of the Effects of Coolant Temperature on Particle Emissions from a Dual Injection Gasoline Engine

2019-01-15
2019-01-0051
Euro VI emission standards have set a very strict limitation on particulate matter emissions of Gasoline Direct Injection (GDI) engine. It is difficult for GDI engine to meet the Euro VI PN regulation (6×1011#/km) without a series of complicated after-treatment devices such as Gasoline Particulate Filter (GPF). Previous research shows that GDI vehicles under cold start condition account for more than 50% of both particle number and mass emissions during the entire NEDC driving cycle. Dual Injection Gasoline engine is based on the GDI engine by adding a set of port fuel injection system. The good mixing characteristics of the port fuel injection system can help to reduce the particulate matter emissions of the GDI engine during the cold start condition.
Technical Paper

The Effects of Injection Strategies on Particulate Emissions from a Dual-Injection Gasoline Engine

2019-01-15
2019-01-0055
European standards have set stringent PN (particle number) regulation (6×1011 #/km) for gasoline direct injection (GDI) engine, posing a great challenge for the particulate emission control of GDI engines. Dual-injection, which combines direct-injection (DI) with port-fuel-injection (PFI), is an effective approach to reduce particle emissions of GDI engine while maintaining good efficiency and power output. In order to investigate the PN emission characteristics under different dual-injection strategies, a DMS500 fast particle spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a dual-injection gasoline engine. In this study, the injection strategies include injection timing, injection ratio and injection pressure of direct-injection.
Technical Paper

The Performances of a Spark Ignition Natural Gas Engine Coupled with In-Cylinder Thermochemical Fuel Reforming (TFR)

2016-10-17
2016-01-2239
In-cylinder thermochemical fuel reforming (TFR), which involves running one cylinder rich of stoichiometric and routing its entire exhaust back into the intake manifold, is an attractive method for improving engine performances. Compared with other hydrocarbon fuels, the chemical structure of methane is more stable owing to much shorter carbon chain. As ethanol contains hydroxyl in chemical structure, it potentially generates OH radical during the combustion. Therefore, adding ethanol into natural gas (NG) might help the thermochemical reforming process in engine cylinder. This paper focused on researching the effects of ethanol-NG combined in-cylinder TFR on engine performances, before which the effect of NG in-cylinder TFR was examined in detail. Cylinder #4 (TFR cylinder) was running rich and its cooled exhaust was coupled to the intake manifold of a four-cylinder engine during the experiments.
Technical Paper

The Effects of Diesel Oxidation Catalyst on Particulate Emission of Ethanol-Biodiesel Blend Fuel

2014-10-13
2014-01-2730
Because of its cleanness and renewability, biodiesel has a great potential as the alternative of diesel fuel to confront with the increasing energy crisis and environment pollution. In this study, diesel oxidation catalyst (DOC) was used to reduce the typical regulated emission and particulate emission. The combined method of fuel design concept with diesel oxidation catalyst was applied in this study. DOC with Pt catalyst was equipped in the engine test bench in this study. The effects of DOC on diesel engine particulate emission fueled with Euro V diesel fuel, biodiesel and ethanol-biodiesel blends were investigated in this study. It was found that DOC seemed have no effects on NOx emission, while it could improve the oxidation reaction from NO to NO2. In the section of particulate emission, DOC could reduce the particulate mass and number concentration, especially in the range of smaller diameter particles. The SOF could be reduced effectively with DOC.
X