Refine Your Search

Topic

Search Results

Technical Paper

A Review of Toxicity Analysis of Particulate Emissions from Conventional and Low-Temperature Combustion Engines

2021-04-06
2021-01-0617
Automotive engines produce pollutant species which has the potential to damage human health as well as the environment. The toxicity potential of these species depends on the concentration, route, and exposure time. Toxicity studies are required in the current scenario due to increased pollution levels by vehicles used for transportation. This study is a review focused on the toxicity analysis of particulate, elemental (particle associated as soot), and organic carbon (organic fraction, PAHs) emission from the internal combustion engine with conventional and alternative fuels like biodiesel and alcohol. The study is focused on the formation, characterization, and quantification of particulate matter, elemental and organic carbon, and their effect on human health. The other part of the study is focused on mutagenicity (mutation in DNA) and cytotoxicity (cell toxicity) of the particulate emitted from the engines.
Technical Paper

A Review on the Effect of Fuel Additives and EGR on Knocking Behavior of Spark Ignition Engine

2022-08-30
2022-01-1004
Engine design and selection of fuels for automotive applications are required to minimize noise and exhaust emissions without compromising fuel economy. The knocking combustion investigation is essential as it directly affects the performance and durability as well as the thermal efficiency of the engine. Several fuel additives were suggested in the previous studies to mitigate the knocking combustion in spark ignition (SI) engines. The present study reviews the effect of antiknock fuel additives such as ethanol, methanol, prenol, n-butanol, furan mixtures, etc., on knocking behavior in SI engines. Additionally, this paper aims to present a systematic review of the studies conducted to investigate the effect of EGR on the knocking in SI engines. The EGR is often considered an effective means to suppress knocking in SI engines. The thermal effect of EGR in controlling the knocking is well known as EGR affects the temperature and pressure history of the combustion chamber.
Technical Paper

Accessing the Predictabilities in Cyclic Combustion and Emission Variations in SI Engines for Their Modelling and Control: A Literature Review

2021-04-06
2021-01-0464
Cyclic variations are inherent in the combustion of internal combustion engines. However, extreme cyclic combustion variations limit the operation of spark-ignition (SI) engines, particularly at highly lean and diluted charge operation. Lean charge operation is desired due to its expected benefits in fuel efficiency and engine-out NOx and HC emissions. Studies suggested the existence of the low-dimensional deterministic nature of cyclic variations, which is essential from the perspective of designing a high-frequency controller. The lean limit of a SI engine operation may be extended by controlling the deterministic component of cyclic variations to meet the future strict emissions and fuel economy regulations. This paper presents a review of the evolution of the experimental and analytical understanding of cyclic combustion variations of spark-ignition engines.
Technical Paper

An Assessment of Cyclic Variations in the Air-Fuel Ratio for RCCI Engine

2022-08-30
2022-01-1057
The potential for simultaneous reduction of soot and NOx emissions and higher fuel conversion efficiency has already been demonstrated for reactivity-controlled compression ignition (RCCI) engines. The RCCI engine has a relatively higher peak pressure rise rate (PPRR) and cyclic variations compared to the conventional diesel engine. The upper and lower operating load boundaries of the RCCI engine are restricted by higher PPRR and cyclic variations, respectively. The cyclic variations in the air-fuel ratio are one of the main factors which govern the variations in combustion parameters. The cyclic variations in combustion need to be controlled for stable engine operation. The present study estimates the cyclic air-fuel ratio from the measured in-cylinder pressure data for the RCCI engine. The RCCI experiments are performed on a modified single-cylinder compression ignition (CI) engine equipped with a development ECU.
Technical Paper

Combustion Instability Analysis of Dual-Fuel Stationary Compression Ignition Engine Using Statistical Method and Wavelet Transform

2022-03-29
2022-01-0462
This study examines the cycle-to-cycle variations (combustion instability) in the dual-fuel stationary compression ignition engine. The variations in the consecutive engine cycles are characterized under different load, gasoline/methanol-diesel premixing ratio (rp) and diesel injection timing (SOI). To investigate the combustion instability in dual-fuel CI-engine, gasoline and methanol are used as a low reactivity fuel (LRF) and is fed in the modified intake manifold during the suction stroke. The tests are performed for different fuel rp using developed port-fuel injector controller in the laboratory. The combustion instability is analyzed using the statistical method and Wavelet Transform (WT). Results indicate that combustion instability is more prone to lower and medium engine load, and variations are significantly higher for the high substitution fraction of LRF. The upper limit of fuel rp is restricted by higher variations in the combustion parameters.
Technical Paper

Crank Angle Based Exergy Analysis of Syngas Fuelled Homogeneous Charge Compression Ignition Engine

2022-08-30
2022-01-1037
Homogeneous charged compression ignition (HCCI) engine is a low-temperature combustion (LTC) strategy with higher thermal efficiency and ultra-low NOx and particulate matter emission. Syngas is a renewable and clean alternative fuel that has gained researchers' interest, and it is one of the alternatives to fossil fuels. Syngas can be a suitable fuel for HCCI Engines due to their characteristics of high flame speed, lower flammability limits, and low auto-ignition temperatures. This paper presents the crank angle-based exergy analysis of syngas fuelled HCCI engines. Energy and exergy analysis is essential for the better performance and utilization of the HCCI engine. The syngas HCCI engine is numerically simulated in this study using a stochastic reactor model (SRM). In SRM models, physical parameters are described by a probability density function (PDF), and these parameters do not vary within the combustion chamber.
Technical Paper

Crank-Angle Resolved Exergy Analysis of Ethanol Fueled HCCI Engine Using Newly Reduced Ethanol Oxidation Mechanism

2018-09-10
2018-01-1683
Ethanol fuelled homogenous charge compression ignition engine (HCCI) offers a better alternative to tackle the problems of achieving higher engine efficiency and lower emissions. Numerical simulations were carried out for a HCCI engine fueled with ethanol by stochastic reactor model using newly developed reduced ethanol oxidation mechanism consists of 47 species and 272 reactions. Reduced mechanism used in this study is validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors in the previous study. Simulations are conducted for engine speeds ranging from 1000 to 3000 rpm at different intake temperatures (range 365-465 K) by varying the air-fuel ratio. Parametric study for combustion and emission characteristics is conducted and engine maps are developed at most efficient inlet temperatures. The HCCI operating range is defined using combustion efficiency (>85%) and maximum pressure rise rate (<5 MPa/ms).
Technical Paper

Determination of Range of Fuel Premixing Ratio in Gasoline/Butanol-Diesel Dual-Fuel Engine for Lower Exhaust Emissions and Higher Efficiency

2020-04-14
2020-01-1128
In this study, the influence of fuel premixing ratio (PMR) on the performance, combustion, and emission characteristics of dual-fuel operation in the compression ignition (CI) engine have been investigated. For dual fuel operation in CI-engine, two fuels of different reactivity are utilized in the same combustion cycle. In this study, low reactivity fuels (gasoline/butanol) is injected into the intake manifold, and high reactivity fuel (diesel) is directly injected into the cylinder. To operate the conventional CI engine in dual-fuel mode, the intake manifold of the engine was modified and a solenoid based port fuel injector was installed. A separate port fuel injector controller was used for injecting the gasoline or butanol. Suitable instrumentation was used to measure in-cylinder pressure and exhaust gas emissions. Experiments were performed by maintaining the constant fuel energy at different fuel PMR for different engine loads at constant engine speed.
Technical Paper

Development and Characterization of Aerosol Conditioning Devices for Solid Ultrafine Particle Measurement from Diesel Engines: A Review

2021-04-06
2021-01-0615
Emission regulations mandate the measurement of solid particles of size greater than 23 nm according to UNECE informal working group particle measurement protocol (PMP). The volatile particles from the engine exhaust are removed by heating and dilution in a device according to the UNECE PMP program. The analysis of solid particles from diesel engines requires aerosol conditioning systems, which can effectively remove volatile particles/species with minimum solid particle losses. Currently, the regulations only allow using an evaporation tube for the measurement of solid particles. Different laboratories have also demonstrated other alternatives such as thermodenuder and catalytic stripper for measuring the solid ultrafine particles emitted from the diesel engine. This paper reviews the recent literature related to the thermodenuder and catalytic striper’s design and operating characteristics.
Technical Paper

Effect of Butanol Addition on Performance, Combustion Stability and Nano-Particle Emissions of a Conventional Diesel Engine

2018-09-10
2018-01-1795
This study presents the experimental investigation of performance, combustion, gaseous and nano-particle emission characteristics of conventional compression ignition (CI) engine fueled with neat diesel and butanol/diesel blends. The experiments were conducted for neat diesel, 10%, 20% and 30% butanol/diesel blend on the volume basis at different engine loads. Combustion characteristics were investigated on the basis of in-cylinder pressure measurement and heat release analysis. The in-cylinder combustion pressure traces were recorded for 2000 consecutive engine combustion cycles for computation of heat release and different combustion parameters. Combustion stability analysis is conducted by analyzing the coefficient of variation of in indicated mean effective pressure (IMEP) and total heat release (THR). Wavelet analysis is also used for analyzing the temporal variations in IMEP data series.
Technical Paper

Effect of Diesel Injection Timing on Peak Pressure Rise Rate and Combustion Stability in RCCI Engine

2018-09-10
2018-01-1731
In the present study, experiments of reactivity control compression ignition (RCCI) combustion mode is performed on a single cylinder automotive diesel engine with development ECU (electronic control unit). For achieving RCCI combustion mode, low reactivity fuel (i.e., gasoline/methanol) is injected into the intake manifold, and high reactivity fuel (i.e., diesel) is directly injected into the engine cylinder. Mass of fuel injection per cycle and their injection events are controlled using ECU. This study presents the experimental investigation on the effect of high reactivity fuel injection timings on peak pressure rise rate (PPRR) and combustion stability in RCCI engine. The combustion parameters, i.e., PPRR, indicated mean effective pressure (IMEP) and total heat release (THR) are calculated from the in-cylinder pressure measurement data. In-cylinder pressure is measured using a piezoelectric pressure transducer installed on the engine cylinder head.
Technical Paper

Effect of Fuel Injection Strategy on Nano-Particle Emissions from RCCI Engine

2018-09-10
2018-01-1709
Increase in the air pollution has driven the research towards the cleaner combustion technology for reciprocating engines. To tackle the challenge of the trade-off between the NOx and soot emissions from a conventional diesel engine, premixed low-temperature combustion (LTC) strategies are potential technologies. Among the LTC strategies, reactivity controlled compression ignition (RCCI) strategy has a better combustion phasing control along with higher fuel conversion efficiency and lower NOx and soot emissions. The present study investigated the nano-particle emissions from RCCI engine fueled with a port injection of gasoline/methanol (low reactivity fuel) and direct injection of diesel (high reactivity fuel). The RCCI combustion experiments were performed on a modified single cylinder compression ignition engine with development ECU. The mass of injected fuel per stroke for the port as well as the direct injection is controlled through ECU.
Journal Article

Effect of Start of Injection on the Particulate Emission from Methanol Fuelled HCCI Engine

2011-12-06
2011-01-2408
New combustion concepts developed in internal combustion engines such as homogeneous charge compression ignition (HCCI) have attracted serious attention due to the possibilities to simultaneously achieve higher efficiency and lower emissions, which will impact the environment positively. The HCCI combustion concept has potential of ultra-low NOX and particulate matter (PM) emission in comparison to a conventional gasoline or a diesel engine. Environmental Legislation Agencies are becoming increasingly concerned with particulate emissions from engines because the health and environmental effects of particulates emitted are now known and can be measured by sophisticated instruments. Particulate emissions from HCCI engines have been usually considered negligible, and the measurement of mass emission of PM from HCCI combustion systems shows their negligible contribution to PM mass. However some recent studies suggest that PM emissions from HCCI engines cannot be neglected.
Technical Paper

Environmental and Cancer Risk Potential Assessment of Unregulated Emissions from Methanol-Diesel Dual Fuel RCCI Engine

2024-01-16
2024-26-0152
The influence of engine load and fuel premixing ratio (PMR) on unregulated emission from a methanol-diesel dual-fuel RCCI (MD-RCCI) engine is examined in this study. The study focuses on assessing the adverse effects of unregulated emissions (saturated HC, unsaturated HC, carbonyl compounds, aromatic hydrocarbon, NH3, and SO2) on the health of human beings and the environment. To quantify the effect on the environment, the greenhouse gas potential (GWPs), Eutrophication potential (EP), Acidification potential (AP), and Ozone forming potential (OFP) are calculated and presented. The cancer risk potential (CRP) of the carbonyl compounds (HCHO and CH3CHO) is calculated and presented to see the effect on human health. The results demonstrate that at lower engine load, with an increase in PMR, the OFP and CRP for MD-RCCI operation increase significantly, whereas AP, EP, and GWPs decrease. Additionally, with a rise in the load at a constant PMR, the AP, EP and OFP decrease significantly.
Technical Paper

Experimental Investigation of Close-Loop Control of HCCI Engine Using Dual Fuel Approach

2013-04-08
2013-01-1675
Homogeneous Charge Compression Ignition (HCCI) offers great promise for excellent fuel economy and extremely low emissions of NOx and PM. HCCI combustion lacks direct control on the "start of combustion" such as spark timing in SI engines and fuel injection timing in CI engines. Auto ignition of a homogeneous mixture is very sensitive to operating conditions of the engine. Even small variations of the load can change the timing from "too early" to "too late" combustion. Thus a fast combustion phasing control is required since it sets the performance limitation of the load control. Crank angle position for 50% heat release is used as combustion phasing feedback parameter. In this study, a dual-fuel approach is used to control combustion in a HCCI engine. This approach involves controlling the combustion heat release rate by adjusting fuel reactivity according to the conditions inside the cylinder. Two different octane fuels (methanol and n-heptane) are used for the study.
Technical Paper

Experimental Investigation of Combustion Stability and Particle Emission from CNG/Diesel RCCI Engine

2020-04-14
2020-01-0810
This paper presents the experimental investigation of combustion stability and nano-particle emissions from the CNG-diesel RCCI engine. A modified automotive diesel engine is used to operate in RCCI combustion mode. An open ECU is used to control the low and high reactivity fuel injection events. The engine is tested for fixed engine speed and two different engine load conditions. The tests performed for various port-injected CNG masses and diesel injection timings, including single and double diesel injection strategy. Several consecutive engine cycles are recorded using in-cylinder combustion pressure measurement system. Statistical and return map techniques are used to investigate the combustion stability in the CNG-diesel RCCI engine. Differential mobility spectrometer is used for the measurement of particle number concentration and particle-size and number distribution. It is found that advanced diesel injection timing leading to higher cyclic combustion variations.
Technical Paper

Experimental Investigation of Cycle-by-Cycle Variations in CAI/HCCI Combustion of Gasoline and Methanol Fuelled Engine

2009-04-20
2009-01-1345
The development of vehicles continues to be determined by increasingly stringent emissions standards including CO2 emissions and fuel consumption. To fulfill the simultaneous emission requirements for near zero pollutant and low CO2 levels, which are the challenges of future powertrains, many research studies are currently being carried out world over on new engine combustion process, such as Controlled Auto Ignition (CAI) for gasoline engines and Homogeneous Charge Compression Ignition (HCCI) for diesel engines. In HCCI combustion engine, ignition timing and combustion rates are dominated by physical and chemical properties of fuel/air/residual gas mixtures, boundary conditions including ambient temperature, pressure, and humidity and engine operating conditions such as load, speed etc.
Technical Paper

Experimental Investigation of Cycle-to-Cycle Variations in Homogeneous Charge Compression Ignition Engine Fueled with Methanol Using Wavelets

2023-04-11
2023-01-0278
The development of automotive engines continues to be determined by gradually more stringent emission norms including CO2 emissions and fuel consumption. To fulfill the simultaneous emission requirements for near-zero pollutants and low CO2 levels, several research studies are currently being carried out around the world on new engine combustion process, such as Homogeneous Charge Compression Ignition (HCCI). In HCCI engines, combustion rate, and ignition timing are dominated by physical and chemical properties of fuel/air/residual gas mixtures, boundary conditions including ambient temperature, pressure, and humidity, and engine operating conditions such as load, speed, etc. Higher cycle-to-cycle variations are observed in HCCI combustion engines due to the large variability of these factors. The cyclic variations in the HCCI engine are investigated on a modified four-stroke, four-cylinder engine. The HCCI combustion mode is tested with methanol fuel.
Technical Paper

Experimental Investigation of Cyclic Variation of Heat Release Dynamics of HCCI Combustion Engine

2021-09-21
2021-01-1170
Homogenous charge compression ignition (HCCI) combustion emerged as a potential technique for reducing automotive pollution. Controlling the combustion timing at different engine operating conditions is one of the major challenges for the commercial application of HCCI combustion engines. To control HCCI ignition timing, it is often necessary to know the characteristics of HCCI cyclic variations. In this study, cyclic combustion variations in an HCCI engine are analyzed. Combustion stability and cycle-to-cycle variations of HCCI combustion parameters were investigated on a modified four-stroke diesel engine. The experiments were conducted by varying intake air temperatures and relative air-fuel ratios at constant engine speed. In the steady-state engine operating condition, in-cylinder pressure signals of 2000 consecutive engine combustion cycles are acquired for each test condition.
Technical Paper

Experimental Investigations of Gasoline HCCI Engine during Startup and Transients

2011-12-15
2011-01-2445
The homogeneous charge compression ignition (HCCI) combustion process is capable of providing both high ‘diesel-like’ efficiencies and very low NOx and particulate emissions. However, among several technical challenges, controlling the combustion phasing, particularly during transients is a major issue, which must be resolved to exploit its commercial applications. This study is focused on the experimental investigations of behavior of combustion timing and other combustion parameters during startup and load transients. The study is conducted on a gasoline fuelled HCCI engine by varying intake air temperature and air-fuel ratio at different engine speeds. Port fuel injection technique is used for preparing homogeneous mixture of gasoline and air. For fueling startup transient test, fuel injection was turned off, and the engine was motored for several minutes until the fire-deck, intake and exhaust temperatures stabilized.
X