Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

A Lightweight Multilayer Dissipative Material with High Acoustic Performance

2023-05-08
2023-01-1083
A multilayer acoustic treatment constructed of fibrous acoustic absorption material combined with dissipative acoustic material achieves a low profile and is lightweight and multi-functional, with properties that are desirable for NVH (noise, vibration, and harshness) treatments. The dissipative material consists of microfibers and acoustically active particles; this material was introduced in the last SAE NVH conference: A Novel Dissipative Acoustic Material [1]. In this paper, the acoustic performance of the multilayer treatment was evaluated by using random incidence absorption and transmission loss measurements, as well as in-vehicle experiments. Absorption and transmission loss were additionally modeled using the transmission matrix method (TMM). In the in-vehicle test, an OEM wheelhouse liner with Trim, for an SUV, was evaluated utilizing this new multilayer 3M treatment.
Technical Paper

A Novel Dissipative Acoustic Material

2021-08-31
2021-01-1128
Due to modern trends in the automotive industry, such as vehicle electrification, light-weighting, reduced NVH (Noise, Vibration and Harshness) packaging space, etc., it is desirable to have a low profile and light-weight acoustic material with multi-functionality. If one single layer of a thin acoustic material can provide comparable absorption and transmission loss to a multilayer treatment, it will benefit the industry by saving weight, packaging space and system cost. Acoustic absorption and sound transmission loss performance of a new dissipative material at reduced weight and thickness is introduced in this paper. The acoustic performance of the material was evaluated by using random incidence absorption and transmission loss as well as in-vehicle experiment. Further potential applications for this material have been identified using the Statistical Energy Analysis (SEA) method with panel leakage considered.
Technical Paper

Equivalent Material Properties of Multi-Layer, Lightweight, High-Performance Damping Material and Its Performance in Applications

2019-06-05
2019-01-1573
In this study, we investigated two aspects of a multi-layer, lightweight damping treatment. The first aspect studied was an equivalent material property estimate for a simplified finite element (FE) model. The simplified model is needed for computational efficiency, i.e. so that Tier 1 and OEM users can represent this complex, multi-layer treatment as a single, isotropic solid layer plus an aluminum constraining layer. Therefore, the use of this simplified FE model allows the multilayer treatment to be included in large body-in-white structural models. An equivalent material property was identified by first representing three unique layers (two adhesive layers plus a connecting standoff layer) by a single row of isotropic solid elements, then an optimization tool was used to determine the “best fit” for two properties including Young’s modulus and material loss factor.
Technical Paper

Comparison of Long Bar Test Method to Oberst Bar Test Method for Damping Material Evaluation

2017-06-05
2017-01-1851
Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
Journal Article

Acoustically Absorbing Lightweight Thermoplastic Honeycomb Panels

2017-06-05
2017-01-1813
The aerospace industry has employed sandwich composite panels (stiff skins and lightweight cores) for over fifty years. It is a very efficient structure for rigidity per unit weight. For the automobile industry, we have developed novel thermoplastic composite panels that may be heated and shaped by compression molding or thermoforming with cycle times commensurate with automotive manufacturing line build rates. These panels are also readily recycled at the end of their service life. As vehicles become lighter to meet carbon dioxide emission targets, it becomes more challenging to maintain the same level of quietness in the vehicle interior. Panels with interconnected honeycomb cells and perforations in one skin have been developed to absorb specific noise frequencies. The absorption results from a combination and interaction of Helmholtz and quarter wave resonators.
Technical Paper

Structural Damping by the Use of Fibrous Materials

2015-06-15
2015-01-2239
Because of the increasing concern with vehicle weight, there is an interest in lightweight materials that can serve several functions at once. Here we consider the vibration damping performance provided by an “acoustical” material (i.e., a fibrous layer that would normally be used for airborne noise control). It has been previously established that the vibration of panel structures creates a non-propagating nearfield in the region close to the panel. In that region, there is an oscillatory, incompressible fluid flow parallel to the panel whose strength decays exponentially with distance from the panel. When a fibrous medium is placed close to the panel in the region where the oscillatory nearfield is significant, energy is dissipated by the viscous interaction of the flow and the fibers, and hence the panel vibration is damped. The degree of panel damping is then proportional to the energy removed from the nearfield by the viscous interaction with the fibrous medium.
Technical Paper

Assessment of Absorbers in Normal-Incidence Four- Microphone Transmission-Loss Systems to Measure Effectiveness of Materials in Lateral-Flow Configurations of Filled or Partially Filled Cavities

2007-05-15
2007-01-2190
The four-microphone standing wave tube system has proven useful for measuring the absorption and transmission loss of various fibrous and non-fibrous absorbers. The system is fast, repeatable, accurate and compact. This paper discusses the advantages of the four-microphone system for measuring the transmission loss in lateral-flow absorber systems. The original four-microphone round impedance tube system and the migration to a four-microphone square tube system are discussed. The four-microphone square tube system allows effective study of filled and partially filled cavities.
X