Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Resonance Charging Applied to a Turbo Charged Gasoline Engine for Transient Behavior Enhancement at Low Engine Speed

2017-09-04
2017-24-0146
Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1. The tuning of the air intake system helps to improve the volumetric efficiency using resonance charging effects.
Journal Article

Compact High-Pressure Intake Silencer with Multilayer Porous Material

2016-06-15
2016-01-1819
Intake noise has become one the main concerns in the design of highly-supercharged downsized engines, which are expected to play a significant role in the upcoming years. Apart from the low frequencies associated with engine breathing, in these engines other frequency bands are also relevant which are related to the turbocharger operation, and which may radiate from the high-pressure side from the compressor outlet to the charge air cooler. Medium frequencies may be controlled with the use of different typologies of resonators, but these are not so effective for relatively high frequencies. In this paper, the potential of the use of multi-layer porous materials to control those high frequencies is explored. The material sheets are located in the side chamber of an otherwise conventional resonator, thus providing a compact, lightweight and convenient arrangement.
Technical Paper

Optimized Air Intake for a Turbocharged Engine Taking into Account Water-Cooled Charge Air Cooler Reflective Properties for Acoustic Tuning

2013-04-08
2013-01-0575
Unsteady intake wave dynamics have a first order influence on an engine's performance and fuel economy. There is an abundant literature particularly for naturally aspirated SI engines on the subject of intake manifolds and primary runner lengths aimed to achieve a tuned intake air line. A more demanding design for today's engines is to increase efficiency to meet the requirements of lower fuel consumption and CO2 emissions. Today's tendencies are downsizing the engine to meet these demands. And for drivability purposes, the engine is combined with a turbocharger coupled with a charge air cooler. However, when the engine's displacement is reduced, it will be very dependent on its boosting system. A particularly interesting point to address corresponds to the engine's operation in the low speed range and during transients where the engine has large pumping losses and poor boost pressure. This operation point can be optimized using acoustic supercharging techniques.
Technical Paper

Transfer Matrix Computation for Intake Elements with Large Pressure Fluctuations under Mean Flow Conditions

2012-04-16
2012-01-0672
A new methodology for modeling engine intake has been presented; it is based on a transfer function relating pressure response and mass flow rate that makes use of the corresponding frequency spectrum obtained on the so-called “dynamic flow bench”. This new approach provides a way to obtain fast and robust results, which take into account all the phenomena inherent to compressible unsteady flows. Recently the potential of this method has been explored by incorporating it in a GT-Power model to produce a coupled frequency - time domain simulation of a naturally aspirated engine. The method exhibited promising results. One strategy utilized to combat the increasingly stringent emissions standards and reduce fuel consumption is to employ downsized turbocharged engines equipped with charge air coolers (CAC). Therefore, research and development must focus not only on naturally aspirated engines but also on turbocharged ones.
Technical Paper

Comparison Between Two Experimental Characterization Setups of Unsteady Behavior of Internal Combustion Engine Intake Systems

2008-04-14
2008-01-0674
In automotive applications, the filling and emptying of internal combustion engine are sometimes analyzed from the frequency spectrum of manifolds. However, this is always established with the assumption of small disturbances which is not realistic in engine ducting, where large pressure fluctuations may arise. For this reason, this paper presents a comparison between the frequency spectrum obtained with the assumption of small disturbances and spectra obtained with a shock test bench. Results of this study show that differences exist. These conclusions are validated by the use of a one-dimensional code which gives the possibility to determine the different parameters which have an influence on the results.
X