Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effects of Charge Motion, Compression Ratio, and Dilution on a Medium Duty Natural Gas Single Cylinder Research Engine

2014-09-30
2014-01-2363
Recent advances in natural gas (NG) recovery technologies and availability have sparked a renewed interest in using NG as a fuel for commercial vehicles. NG can potentially provide both reduced operating cost and reductions in CO2 emissions. Commercial NG vehicles, depending on application and region, have different performance and fuel consumption targets and are subject to various emissions regulations. Therefore, different applications may require different combustion strategies to achieve specific targets and regulations. This paper summarizes an evaluation of combustion strategies and parameters available to meet these requirements while using NG in a spark ignited engine. A single-cylinder research engine using a modified diesel cylinder head was employed for this study. Both stoichiometric combustion with cooled exhaust gas recirculation (EGR) and lean-burn were evaluated.
Technical Paper

Increasing EGR Tolerance using High Tumble in a Modern GTDI Engine for Improved Low-Speed Performance

2013-04-08
2013-01-1123
Engine downsizing and downspeeding using GTDI technology improves fuel economy while maintaining vehicle performance. The downsizing potential of an engine application is limited by engine knock at low engine speeds as well as turbocharger inlet and catalyst temperatures at high speeds, requiring high spark retard and fuel enrichment, respectively. Both spark retard and fuel enrichment reduce the overall real world fuel economy benefit. Cooled exhaust gas recirculation (EGR) has been investigated as a way of reducing knock and lowering exhaust gas temperatures. This paper discusses the use of low-pressure route cooled EGR for knock mitigation at low engine speeds in order to improve full load performance and fuel consumption and increase the potential for engine downsizing.
Journal Article

An Optical Investigation of Fuel Composition Effects in a Reactivity Controlled HSDI Engine

2012-04-16
2012-01-0691
Reactivity controlled compression ignition combustion was investigated for three fuel combinations: isooctane-diesel, PRF90-diesel, and E85-diesel. Experiments were conducted at 1200 rpm, 160 kPa absolute intake pressure, and fixed total fuel energy using ‘optimal’ operating condition for each fuel combination that were chosen based on combustion performance from SOI timing and premixed energy fraction sweeps. The heat release duration was found to scale with the difference in reactivity between the premixed and direction injected fuel; a small difference gives rise to short heat release duration, similar to that of HCCI combustion. Conversely, as the difference increases, the heat release period lengthens. The high-speed optical data confirmed that the combustion occurred in a staged manner from the high-reactivity zones, which were located at the periphery of the chamber, to low-reactivity zones in the field of view.
X