Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Wear

2014-04-01
2014-01-1773
Clutch wear is dominantly manifested as the reduction of friction plate thickness. For dry dual clutch with position-controlled electromechanical actuators this affects the accuracy of normal force control because of the increased clutch clearance. In order to compensate for the wear, dry dual clutch is equipped with wear compensation mechanism. The paper presents results of experimental characterization and mathematical modeling of two clutch wear related effects. The first one is the decrease of clutch friction plate thickness (i.e. increase of clutch clearance) which is described using friction material wear rate experimentally characterized using a pin-on-disc type tribometer test rig. The second wear related effect, namely the influence of the clutch wear compensation mechanism activation at various stages of clutch wear on main clutch characteristics, was experimentally characterized using a clutch test rig which incorporates entire clutch with related bell housing.
Journal Article

Experimental Characterization and Modeling of Dry Dual Clutch Thermal Expansion Effects

2013-04-08
2013-01-0818
Thermal expansion of a clutch pack with position-controlled actuation can affect the accuracy of clutch normal torque control, because it causes an increase of the clutch normal force for the given actuator position. The paper presents an experimental characterization and mathematical modeling of the dry dual clutch thermal expansion effects. The experimental data have been collected by using a clutch/transmission test rig. The acquired data point to two separate, mutually opposite thermal expansion effects. The first effect relates to increase of the clutch clearance with temperature growth, while the second one includes decrease of press plate and engagement bearing positions for a given clutch torque and a rising temperature (i.e. the clutch torque rises with temperature growth and a constant actuator position). In order to explain and describe these two effects, a geometry analysis of the clutch, focused on thermal expansion, is carried out.
Journal Article

Design of Test Rigs for a Dry Dual Clutch and its Electromechanical Actuator

2012-04-16
2012-01-0807
Dual Clutch Transmissions with dry electromechanically actuated clutches have emerged on the market recently. In order to provide their favorable operation in terms of the clutch torque control, it is very important to have a good knowledge on the system behavior related to the actuator dynamics, the dry friction coefficient behavior, and the thermal dynamics. This paper describes two test rigs developed to support the research work on a dry dual clutch with a lever-based electromechanical actuation system. The first test rig (actuation system test rig) provides a basis for a comprehensive multi-step identification of the actuation system parameters and characterization of the overall system behavior. This test rig includes a modified dual clutch assembly including a built-in sensor for the purpose of direct normal force measurement.
Journal Article

Experimental Characterization of Wet Clutch Friction Behaviors Including Thermal Dynamics

2009-04-20
2009-01-1360
Wet clutches are widely used in automotive systems. They are essential parts of automatic transmissions, modern All-Wheel-Drive systems or dual-clutch transmissions. Regardless of the area of application, a good knowledge of clutch friction behaviors is crucial for the clutch control system development. This paper considers two important factors of the wet clutch dynamics: coefficient of friction behavior and thermal dynamics. An Active Limited Slip Differential wet clutch with carbon fiber-based friction lining material is experimentally characterized by using a precise wet clutch setup. The characterization of the coefficient of friction behavior includes influence of clutch slip speed, applied force, and friction surface temperature. The clutch thermal dynamics is characterized based on the heat power balance law applied to the clutch separator plate with a variable heat transfer coefficient. The results of the thermal model experimental validation are presented, as well.
Technical Paper

Design and Experimental Characterization of a Magnetorheological Fluid Clutch

2009-04-20
2009-01-0142
Magnetorheological fluid (MRF) clutches are expected to be used in several automotive systems such as auxiliary engine devices, active differentials, and automatic transmissions. An experimental MRF clutch has been developed at the University of Zagreb, in order to support MRF clutch modeling and control research. The paper first presents calculation of the main clutch design parameters and describes the clutch mechatronic system. Next, the clutch static and dynamic behaviors are experimentally characterized. Finally, a model of MRF clutch dynamics is outlined, and characteristic model validation results are presented.
Technical Paper

Experimental Setups for Active Limited Slip Differential Dynamics Research

2008-04-14
2008-01-0302
In order to support active limited slip differential (ALSD) modeling work, a test rig of a DC motor-actuated ALSD has been developed. The test rig is equipped with a torque servomotor that provides a precise closed-loop control of the clutch slip speed, as well as with sensors of clutch torque, and DC motor position and current. In addition to the test rig, a precise wet clutch experimental setup has been developed by using the differential hardware. The setup provides direct measurements of the clutch pack axial force, the separator plate temperature, and the press plate axial position. The paper describes the ALSD test rig and the wet clutch experimental setup, presents and analyzes characteristic experimental results, and outlines the main ALSD modeling results.
X