Criteria

Text:
Display:

Results

Viewing 1 to 12 of 12
2017-09-04
Technical Paper
2017-24-0018
Nikiforos Zacharof, Georgios Fontaras, Theodoros Grigoratos, Biagio Ciuffo, Dimitrios Savvidis, Oscar Delgado, J. Felipe Rodriguez
Abstract Heavy-duty vehicles (HDVs) account for some 5% of the EU’s total greenhouse gas emissions. They present a variety of possible configurations that are deployed depending on the intended use. This variety makes the quantification of their CO2 emissions and fuel consumption difficult. For this reason, the European Commission has adopted a simulation-based approach for the certification of CO2 emissions and fuel consumption of HDVs in Europe; the VECTO simulation software has been developed as the official tool for the purpose. The current study investigates the impact of various technologies on the CO2 emissions of European trucks through vehicle simulations performed in VECTO. The chosen vehicles represent average 2015 vehicles and comprised of two rigid trucks (Class 2 and 4) and a tractor-trailer (Class 5), which were simulated under their reference configurations and official driving cycles.
2017-09-04
Technical Paper
2017-24-0133
Jelica Pavlovic, Alessandro Tansini, Georgios Fontaras, Biagio Ciuffo, Marcos Garcia Otura, Germana Trentadue, Ricardo Suarez Bertoa, Federico Millo
Abstract Plug-in Hybrid Electric Vehicles (PHEVs) are one of the main technology options for reducing vehicle CO2 emissions and helping vehicle manufacturers (OEMs) to meet the CO2 targets set by different Governments from all around the world. In Europe OEMs have introduced a number of PHEV models to meet their CO2 target of 95 g/km for passenger cars set for the year 2021. Fuel consumption (FC) and CO2 emissions from PHEVs, however, strongly depend on the way they are used and on the frequency with which their battery is charged by the user. Studies have indeed revealed that in real life, with poor charging behavior from users, PHEV FC is equivalent to that of conventional vehicles, and in some cases higher, due to the increased mass and the need to keep the battery at a certain charging level.
2017-03-28
Technical Paper
2017-01-1160
Claudio Cubito, Luciano Rolando, Federico Millo, Biagio Ciuffo, Simone Serra, Germana Trentadue, Marcos Garcia Otura, Georgios Fontaras
Abstract This article analyses the Energy Management System (EMS) of a Euro 6 C-segment parallel Plug-In Hybrid (PHEV) available on the European market, equipped with a Flywheel Alternator Starter (FAS). The car has various selectable operating modes, such as the Zero Emission Vehicle (ZEV), Blended and Sport, characterized by a different usage of the electric driving with significant effects on the electric range and on CO2 emissions. The different hybrid control strategies were investigated applying the UNECE Regulation 83, used for the European type approval procedure, along the New European Driving Cycle (NEDC). To evaluate the influence of the forthcoming Worldwide Harmonized Light Vehicles Test Cycle (WLTC), which will replace the NEDC from September 2017, this testing procedure was also applied. Vehicle testing was carried out on a two-axle chassis dynamometer at the Vehicle Emission LAboratory (VELA) of the Joint Research Centre (JRC) of the European Commission.
2015-09-06
Technical Paper
2015-24-2391
Dimitris Tsokolis, Stefanos Tsiakmakis, Georgios Triantafyllopoulos, Anastasios Kontses, Zisis Toumasatos, Georgios Fontaras, Athanasios Dimaratos, Biagio Ciuffo, Jelica Pavlovic, Alessandro Marotta, Zissis Samaras
The paper describes the development of a modelling approach to simulate the effect of the new Worldwide harmonized Light duty Test Procedure (WLTP) on the certified CO2 emissions of light duty vehicles. The European fleet has been divided into a number of segments based on specific vehicle characteristics and technologies. Representative vehicles for each segment were selected. A test protocol has been developed in order to generate the necessary data for the validation of the vehicle simulation models. In order to minimize the sources of uncertainty and the effects of flexibilities, a reference “template model” was developed to be used in the study. Subsequently, vehicle models were developed using AVL Cruise simulation software based on the above mentioned template model. The various components and sub-modules of the models, as well as their input parameters, have been defined with the support of the respective OEMs.
2014-04-01
Journal Article
2014-01-0595
Georgios Fontaras, Panagiota Dilara, Michael Berner, Theo Volkers, Antonius Kies, Martin Rexeis, Stefan Hausberger
Due to the diversity of Heavy Duty Vehicles (HDV), the European CO2 and fuel consumption monitoring methodology for HDVs will be based on a combination of component testing and vehicle simulation. In this context, one of the key input parameters that need to be accurately defined for achieving a representative and accurate fuel consumption simulation is the vehicle's aerodynamic drag. A highly repeatable, accurate and sensitive measurement methodology was needed, in order to capture small differences in the aerodynamic characteristics of different vehicle bodies. A measurement methodology is proposed which is based on constant speed measurements on a test track, the use of torque measurement systems and wind speed measurement. In order to support the development and evaluation of the proposed approach, a series of experiments were conducted on 2 different trucks, a Daimler 40 ton truck with a semi-trailer and a DAF 18 ton rigid truck.
2013-09-08
Technical Paper
2013-24-0150
Georgios Fontaras, Martin Rexeis, Panagiota Dilara, Stefan Hausberger, Konstantinos Anagnostopoulos
Following its commitment to reduce CO2 emissions from road transport in Europe, the European Commission has launched the development of a new methodology for monitoring CO2 emissions from heavy-duty vehicles (HDV). Due to the diversity and particular characteristics of the HDV sector it was decided that the core of the proposed methodology will be based on a combination of component testing and vehicle simulation. A detailed methodology for the measurement of each individual vehicle component of relevance and a corresponding vehicle simulation is being elaborated in close collaboration with the European HDV manufacturers, component suppliers and other stakeholders. Similar approaches have been already adopted in other major HDV markets such as the US, Japan and China.
2012-09-24
Technical Paper
2012-01-1944
Georgios Fontaras, Urbano Manfredi, Giorgio Martini, Panagiota Dilara, Giovanni Deregibus
Gas-operated vehicles powered by natural gas (NG) or other gaseous fuels such as liquefied petroleum gas (LPG), are seen as a possible option for curbing CO₂ emissions, fuel consumption and operating costs of goods and passenger transport. Initiatives have been adopted by various public organizations in Europe and abroad in order to introduce gas-fueled vehicles in their fleets or use retrofit fueling systems in existing ones. In this study a retrofit dual fuel (diesel-gas) fuelling system was investigated as a potential candidate technology for city bus fleets. The system is marketed under the commercial name d-gid. It is a platform developed by the company Ecomotive Solutions for the control and management of a diesel engine fuelled with a mixture of gaseous fuels. In order to assess its environmental and cost effectiveness the system was tested on a Volvo city bus. The tests were performed on an HDV chassis dyno under various driving conditions.
2011-04-12
Technical Paper
2011-01-0615
George Karavalakis, Georgios Fontaras, Evaggelos Bakeas, Stamos Stournas
This study investigates the impact of low concentration biodiesel blends on the regulated and polycyclic aromatic hydrocarbon (PAH) emissions from a modern passenger vehicle. The vehicle was Euro 4 compliant fitted with a direct injection common-rail diesel engine and a diesel oxidation catalyst. Emission and fuel consumption measurements were performed on a chassis dynamometer using constant volume sampling (CVS) technique, following the European regulations. All measurements were conducted over the type approval New European Driving Cycle (NEDC) and the real-traffic-based Artemis driving cycles. Aiming to evaluate the fuel impact on emissions, a soy-based, a palm-based, and a rapeseed oil-based biodiesel were blended with an ultra-low sulfur diesel at proportions of 10, 20, and 30% by volume. The experimental results revealed that emissions of PM, HC and CO decreased with biodiesel over most driving conditions.
2010-05-05
Journal Article
2010-01-1484
Kenneth D. Rose, Zissis Samaras, Liesbeth Jansen, Richard Clark, Nigel Elliott, Georgios Fontaras, Peter J. Zemroch, Diane Hall, Maria Dolores Cardenas Almena, Cassandra Higham, Maria Kalogirou
Fatty Acid Methyl Ester (FAME) products derived from vegetable oils and animal fats are now widely used in European diesel fuels and their use will increase in order to meet mandated targets for the use of renewable products in road fuels. As more FAME enters the diesel pool, understanding the impact of higher FAME levels on the performance and emissions of modern light-duty diesel vehicles is increasingly important. Of special significance to Well-to-Wheels (WTW) calculations is the potential impact that higher FAME levels may have on the vehicle's volumetric fuel consumption. The primary objective of this study was to generate statistically robust fuel consumption data on three light-duty diesel vehicles complying with Euro 4 emissions regulations. These vehicles were evaluated on a chassis dynamometer using four fuels: a hydrocarbon-only diesel fuel and three FAME/diesel fuel blends containing up to 50% v/v FAME. One FAME type, a Rapeseed Methyl Ester (RME), was used throughout.
2009-06-15
Technical Paper
2009-01-1895
George Karavalakis, Stamoulis Stournas, George Fontaras, Zissis Samaras, George Dedes, Evangelos Bakeas
This study examines the effects of neat soy-based biodiesel (B100) and its 50% v/v blend (B50) with low sulphur automotive diesel on vehicle PAH emissions. The measurements were conducted on a chassis dynamometer with constant volume sampling (CVS) according to the European regulated technique. The vehicle was a Euro 2 compliant diesel passenger car, equipped with a 1.9 litre common-rail turbocharged direct injection engine and an oxidation catalyst. Emissions of PAHs, nitro-PAHs and oxy-PAHs were measured over the urban phase (UDC) and the extra-urban phase (EUDC) of the type approval cycle (NEDC). In addition, for evaluating realistic driving performance the non-legislated Artemis driving cycles (Urban, Road and Motorway) were used. Overall, 12 PAHs, 4 nitro-PAHs, and 6 oxy-PAHs were determined. The results indicated that PAH emissions exhibited a reduction with biodiesel during all driving modes.
2009-06-15
Technical Paper
2009-01-1803
Georgios Fontaras, Elias Vouitsis, Zissis Samaras
Reducing fuel consumption and emissions from road transport is a key factor for tackling global warming, promoting energy security and sustaining a clean environment. Several technical measures have been proposed in this aspect amongst which the application of low viscosity engine lubricants. Low viscosity lubricants are considered to be an interesting option for reducing fuel consumption (and CO2 emissions) throughout the fleet in a relatively cost effective way. However limited data are available regarding their actual “real-world” performance with respect to CO2 and other pollutant emissions. This study attempts to address the issue and to provide experimental data regarding the benefit of low viscosity lubricants on fuel consumption and CO2 emissions over both the type-approval and more realistic driving cycles.
2009-04-20
Technical Paper
2009-01-0692
Marina Kousoulidou, Georgios Fontaras, Leonidas Ntziachristos, Zissis Samaras
Today most of the European member states offer diesel fuel which contains fatty acid methylesters (biodiesel) at a range between 0.5 to 5% vol. In order to meet longer term objectives, the mixing ratio is expected to rise up to 10% vol. in the years to come. The question therefore arises, how current engine technologies, which were not originally designed to operate on biodiesel blends, perform at this relatively high mixing ratio. A number of experiments were therefore performed over several steady-state operation modes, using a 10% vol. biodiesel blend (palm oil feedstock) on a light-duty common-rail Euro 3 engine. The experiments included measurement of the in-cylinder pressure during combustion, regulated pollutants emissions and fuel consumption. The analysis showed that the blends tested present good fuel characteristics. Combustion effects were limited but changes in the start of ignition and heat release rate could still be identified.
Viewing 1 to 12 of 12

    Filter

    • Range:
      to:
    • Year: