Refine Your Search

Search Results

Author:
Viewing 1 to 16 of 16
Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley Part 1: Measurement Using Micro Data Logger System and Thin-Film Sensor

2014-04-01
2014-01-1732
In order to reduce friction and predict wear of the sliding part, it is important to determine the oil film thickness of particular area. A sensor or similar device must be attached to the sliding surface to detect the oil film thickness. However, a sensor could not be attached, due to the lack of space on contact surface, and moreover there was no method to secure the sensor on contact surface at that time. A several-micrometer-thin-film sensor was installed on a sliding surface to attempt measurement, but since the sensor was attached on a contact surface, wear occurred immediately and data was unable to be obtained. To accomplish above issue, we developed a protective layer with excellent wear-resistance that successfully extended the measurement time by protecting the thin-film sensor.
Journal Article

In-Situ Measurement and Numerical Solution of Main Journal Bearing Lubrication in Actual Engine Environment

2016-04-05
2016-01-0894
A simple method is frequently used to calculate a reciprocating engine’s bearing load from the measured cylinder pressure. However, it has become apparent that engine downsizing and weight reduction cannot be achieved easily if an engine is designed based on the simple method. Because of this, an actual load on a bearing was measured, and the measured load values were compared with a bearing load distribution calculated from cylinder pressure. As a result, it was found that some of actual loads were about half of the calculated ones at certain crank angles. The connecting rod’s elastic deformation was focused on as a factor behind such differences, and the rod’s deformation due to the engine’s explosion load was studied. As a result, it was found that the rod part of the engine’s connecting rod was bent by 0.2 mm and became doglegged. Additional investigation regarding these findings would allow further engine downsizing.
Technical Paper

Analysis of CVT Element Vibration by In-Situ Measurement

2020-04-14
2020-01-0906
When the belt contacts a pulley in a pushing belt-type CVT, vibration is generated by frictional force due to rubbing between the individual elements that are components of the belt, which is said to increase wear and noise. The authors speculated that the source of that vibration is misalignment of the secondary pulley and primary pulley V-surfaces. To verify that phenomenon, a newly developed micro data logger was attached to an element of a mass-produced metal pushing V-belt CVT and the acceleration was measured at rotations equal to those at drive (1000 to 2500 r/m). In addition, the results of calculations using a behavior analysis model showed that changes in pulley misalignment influence element vibration, and that the magnitude of the vibration is correlated to the change in the metal pushing V-belt alignment immediately before the element contacts the pulley.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Journal Article

Analysis of Oil Film Generation on the Main Journal Bearing Using a Thin-Film Sensor and Elasto-Hydrodynamic Lubrication (EHL) Model

2013-04-08
2013-01-1217
Reducing friction in the crankshaft main bearings is an effective means of improving the fuel efficiency of reciprocating internal combustion engines. To realize these improvements, it is necessary to understand the lubricating conditions, in particular the oil film pressure distributions between crankshaft and bearings. In this study, we developed a thin-film pressure sensor and applied it to the measurement of engine main bearing oil film pressure in a 4-cylinder, 2.5 L gasoline engine. This thin-film sensor is applied directly to the bearing surface by sputtering, allowing for measurement of oil film pressure without changing the shape and rigidity of the bearing. Moreover, the sensor material and shape were optimized to minimize influence from strain and temperature on the oil film pressure measurement. Measurements were performed at the No. 2 and 5 main bearings.
Journal Article

Wear Properties of Car Engine Shaft in Actual Engine Environment

2015-04-14
2015-01-0686
When evaluating the wear properties of slide bearings for car engines, it is a common practice to conduct long-term physical test using a bearing tester for screening purposes according to the revolution speed of the shaft, supply oil temperature and bearing pressure experienced in the actual use of engines. The loading waveform applied depends on the capability of the tester that is loaded, and it is often difficult to apply a loading waveform equivalent to that of actual engines. To design an engine that is more compact or lighter, it is necessary to reduce the dimensions of slide bearings and the distance between bearings. This requires loading tests on a newly designed engine by applying a loading waveform equivalent to that of actual engines to slide bearings and their vicinity before conducting a firing test. We therefore conducted an engine firing test by attaching thin-film sensors to the slide bearing part of the engine and measured the actual load distribution.
Technical Paper

Measurement of Piston Skirt Oil-film Pressure under Piston Slap

2007-05-15
2007-01-2215
Using small thin-film pressure sensors deposited onto a piston skirt surface, oil-film pressure on the piston skirt surface is measured when piston slap noise is generated without affecting the surface geometry, stiffness and mass of the piston. Under a no-load firing engine condition and at low temperature, the measured oil-film pressure corresponded well to the measured acceleration of the cylinder liner, which is indicative of piston slap noise, confirming the validity of the present method. Moreover, the oil-film pressure distribution on the skirt surface was measured for different engine speeds and piston pin offsets, which enabled more insight to be provided into piston secondary motion than that by considering the effects of cylinder liner acceleration.
Technical Paper

Unsteady Three-Dimensional Computations of the Penetration Length and Mixing Process of Various Single High-Speed Gas Jets for Engines

2017-03-28
2017-01-0817
For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
Technical Paper

Temperature Prediction of Actual Contact Portion of the Metal Belt CVT

2018-04-03
2018-01-0122
In a previous study by the authors, austenite (γ phase) formed on the topmost of pulleys after long term operation of continuously variable transmission (CVT) [1]. In general, martensite arising from heat treatment forms on the surface of pulleys and gears. Therefore, the sliding surface has a body-centered cubic (BCC) metal structure, and transformation into and existence of austenite (γ phase) is difficult unless there is a thermal history exceeding the eutectoid point. For the verification of that possibility, it was crucial to obtain temperature variation on the sliding surface. The major problem for such measurements was rotation of parts inside an operating CVT. In this study, uniquely developed measurement system enabled non-contact temperature measurement near the contact portion. Results were substituted to heat conduction equation to predict the temperature at the exact contact portion.
Technical Paper

Development of Coaxial Type Thin Film Temperature Sensor with Improved Measurement Accuracy Based on Principle of Thermoelectromotive Force

2018-10-30
2018-32-0032
In order to verify cooling loss reduction effect of internal combustion engine, method for measuring wall surface temperature and heat flux with high accuracy is required. Various methods have been proposed for measuring the cooling loss from the combustion gas to the combustion chamber wall, newly coaxial type thin-film temperature sensor was developed for wall temperature and heat flux measurement by the authors. This sensor consists of thin-film and body and center wire have three junction positions in the case where three materials are different. Therefore, it is necessary to use the same materials for thin-film and body or thin-film and center wire to make two junction points. In this study, sputtering method that can be formed various kinds of alloy materials and film thickness of 0.1~1μm on the sensor surface was chosen.
Technical Paper

A Development of Measurement System for Piston Ring Sliding Surface Pressure

2018-10-30
2018-32-0022
The piston rings, the engine sliding parts, are required to further contribute on mechanical loss reduction in order to improve fuel efficiency. However, many cases of the abnormal combustion due to oil upward flow, as well as the increase in oil consumption have been reported. Therefore, elucidation of the mechanism of those phenomena is still an urgent task. It is widely known that the distribution of the sliding face pressure in between the piston ring and the cylinder bore largely influence the oil flow via the sliding face of the piston ring. However, there are many unknown aspects in this field. Therefore, verification of the sliding face pressure during the actual operation is necessary in order to elucidate the mechanism of oil consumption. The thin-film sensor, since it has little influence on shape, is widely used as a measurement method of the sliding face pressure between two different faces, however this method has never been applied to the piston ring in the past.
Technical Paper

Life Estimation of Rolling Bearings Based on the Colors on Sliding Surfaces

2019-04-02
2019-01-0180
It is experimentally known that the surface color of bearing balls gradually becomes brown during long term operation of the bearings under appropriate lubrication conditions. That exhibits the possibility of an estimation method for residual life of ball bearings without any abnormal wear on the surfaces by precise color measurements. Therefore, we examined what set colors on bearing balls by surface observation using scanning electron microscopy and subsurface analysis using transmission electron microscopy. Results showed that an amorphous carbon layer had gradually covered ball surfaces during operation of the bearings. The layer not only changed ball color but also made overall ball shapes closer to a complete sphere. The report also introduces a uniquely developed color analyzer which enabled color measurements on metallic surfaces, such as the above-mentioned balls.
Technical Paper

Measurement of Oil Film Pressure in Piston Pin-Boss by Thin-Film Pressure Sensor

2015-09-01
2015-01-2040
1 Piston design approach for automotive engines has been advanced from both experimental and calculation analysis. However, the developments of experimental analysis method that can verify the accuracy of the calculation analysis are required. In this paper, multi-point thin-film pressure sensor for piston pin-boss part (hereinafter pin-boss) was sputtered on piston pin sliding surface and oil-film pressure distribution was measured in axial and circumferential direction using the pin-boss fatigue tester. Two kinds of pistons with different pin-boss shape (tapered shape) were used in the experiment. The peak pressure of piston with large tapered shape was higher about 20%, compared to the piston with the small tapered shape. As a result of oil film pressure distribution in circumferential direction, it has measured that the oil-film pressure at near side relief was higher than that of piston top side.
Technical Paper

Calculation of Oil Film Thickness on Bearing Raceway Grooves by Measuring Raceway Outer Ring Temperature

2021-04-06
2021-01-0342
As electric powertrain for electric vehicles (EVs) and hybrid vehicles (HVs) are becoming more efficient and smaller, rolling bearings for these vehicles should be capable of operating at higher speeds than those for internal combustion engines (ICEs). One key factor in predict fatigue endurance of such bearings is the oil film thickness on the bearing raceway grooves. Direct measurement of the oil film in operating machines is virtually unfeasible, while calculation of the oil film requires the input of precise temperature variation around the film. In this study, the oil film thickness on the bearing raceway grooves was calculated while in high-speed rotation by: (1) measuring the temperature profile of the bearing raceway outer ring; (2) calculating the temperature of the raceway groove using the basic formula for heat transfer; and (3) conducting an Elasto-Hydrodynamic Lubrication (EHL) analysis based on the temperature calculated in (2).
Journal Article

Metal Belt CVT Seizure Monitoring System Using Wear Debris Analysis and Particle Measurement

2020-04-14
2020-01-0907
An apparatus that automatically samples lubricating oil and measures the size distribution of particles in the oil has been developed in order to monitor the state of engines and transmissions in operation. It is a widely known fact that when an engine or transmission seizes or experiences unusual wear, comparatively large pieces of wear debris are released. The goal of the use of the apparatus is to detect these particles of wear debris, stop testing before damage occurs, and clarify the causes. Seizure was, therefore, artificially induced in a transmission, and the wear debris in the oil was closely analyzed following the test. The results showed that when the simulated seizure occurred, large, elongated particles of wear debris were produced. Similar wear debris was observed in oil recovered from the market following the seizure of a component, and at present this is believed to be a type of wear debris characteristic of seizure.
Journal Article

Strain Analysis of Belt Element-Pulley Interaction of an Automobile CVT under Actual Vehicle Speed Condition

2017-03-28
2017-01-1106
In order to improve shift response, durability and transmission efficiency of the CVT system, it is essential to precisely understand the behavior of individual belt elements. Although there have been some previous works measuring the strain or load on belt elements, they have been performed for speed ranges that are far below actual vehicle operation speeds due to limits in measurement techniques. We therefore developed measurement equipment that can be fitted on a CVT belt to enable measurement during actual CVT operation, and obtained the strain on belt elements under transient conditions including acceleration and transmission ratio shifts. The results showed that the strain peaks due to normal force on V faces of elements around the entrance and/or exit of the pulleys. The bending component of the strain fluctuated on the straight section from the secondary pulley to the primary pulley.
X