Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

How Well Can mPEMS Measure Gas Phase Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0369
“Real world emissions” is an emerging area of focus in motor vehicle related air quality. These emissions are commonly recorded using portable emissions measurement systems (PEMS) designed for regulatory application, which are large, complex and costly. Miniature PEMS (mPEMS) is a developing technology that can significantly simplify on-board emissions measurement and potentially promote widespread use. Whereas full PEMS use analyzers to record NOx, CO, and HCs similar to those in emissions laboratories, mPEMS tend to use electrochemical sensors and compact optical detectors for their small size and low cost. The present work provides a comprehensive evaluation of this approach. It compares measurements of NOx, CO, CO2 and HC emissions from five commercial mPEMS to both laboratory and full regulatory PEMS analyzers. It further examines the use of vehicle on-board diagnostics data to calculate exhaust flow, as an alternative to on-vehicle exhaust flow measurement.
Technical Paper

How Well Can mPEMS Measure Particulate Matter Motor Vehicle Exhaust Emissions?

2020-04-14
2020-01-0391
Real world emissions are increasingly the standard of comparison for motor vehicle exhaust impact on the environment. The ability to collect such data has thus far relied primarily on full portable emissions measurement systems (PEMS) that are bulky, expensive, and time consuming to set up. The present work examines four compact, low cost, miniature PEMS (mPEMS) that offer the potential to expand our ability to record real world exhaust emissions over a larger number of operating conditions and combustion engine applications than currently possible within laboratory testing. It specifically addresses the particulate matter (PM) capabilities of these mPEMS, which employ three different methodologies for particle measurement: diffusion charger, optical scattering, and a multi-sensor approach that combines scattering, opacity, and ionization. Their performance is evaluated against solid particle number and PM mass with both vehicle tests and flame generated soot.
Technical Paper

Using Artificial Ash to Improve GPF Performance at Zero Mileage

2019-04-02
2019-01-0974
Gasoline particulate filters (GPF) with high filtration efficiency (>80%) at zero mileage are in growing demand to meet increasingly tight vehicle emission standards for particulate matter being implemented in US, EU, China and elsewhere. Current efforts to achieve high filter performance mainly focus on fine-tuning the filter structure, such as the pore size distribution and porosity of the bare substrate, or the washcoat loading and location of catalyzed substrates. However, high filtration efficiency may have a cost in high backpressure that negatively affects engine power. On the other hand, it has been recognized in a few reports that very low amounts of ash deposits (from non-combustible residue in the exhaust) can significantly increase filtration efficiency with only a mild backpressure increase.
Journal Article

Determining Soot Distribution in the Vehicle Exhaust Downstream of a Faulty Diesel Particulate Filter

2013-04-08
2013-01-1562
New emissions certification requirements for medium duty vehicles (MDV) meeting chassis dynamometer regulations in the 8,500 lb to 14,000 lb weight classes as well as heavy duty (HD) engine dynamometer certified applications in both the under 14,000 lb and over 14,000 lb weight classes employing large diameter exhaust pipes (up to 4″) have created new exhaust stream sampling concerns. Current On-Board-Diagnostic (OBD) dyno certified particulate matter (PM) requirements were/are 7x the standard for 2010-2012 applications with a planned phase in down to 3x the standard by 2017. Chassis certified applications undergo a similar reduction down to 1.75x the standard for 2017 model year (MY) applications. Failure detection of a Diesel Particulate Filter (DPF) at these low detection limits facilitates the need for a particulate matter sensor.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

Evaluation of Partial Flow Dilution Methodology for Light Duty Particulate Mass Measurement

2013-04-08
2013-01-1567
Two different implementations of Partial Flow Dilution (PFD) methodology designed for gravimetric particulate matter (PM) sampling are evaluated for applicability to light-duty chassis emissions testing. Filter PM measurements were collected and compared to constant volume sampler (CVS) full dilution tunnel PM filter measurements and other real-time PM measurement technologies, using gasoline vehicles generating a range of 0.1 to 10.0 mg/mile PM. Exhaust samples were collected for each phase of the Federal Test Procedure (FTP-75) with a fourth filter sample collected for the US06 supplemental cycle. Both PFDs satisfactorily met proportionality criteria for conventional combustion engines, but some improvements are needed for hybrid electric vehicles (HEVs). The PM mass collected scaled linearly with the CVS tunnel samples, with slopes of 1.03 and 0.74 for the two PFDs.
Journal Article

Motor Vehicle PM Emissions Measurement at LEV III Levels

2011-04-12
2011-01-0623
This paper examines the issues concerning particulate matter (PM) emissions measurement at the 3 mg/mi level proposed as the future LEV III standard. These issues are general in nature, but are exacerbated at the low levels contemplated for upcoming emissions standards. They are discussed in the context of gasoline direct injection (GDI) engines, where they can have an important impact on the continued development of this technology for improved fuel economy. GDI particulate emissions, just as engine-out diesel PM, contain a high fraction of soot. But the total PM mass is significantly lower than from diesel engines, and there can be significant variations in emissions rate and apparent PM composition between cold-start and running emissions. PM emissions levels depend on sampling method and location. As a result, there can be substantial differences in PM sampled and diluted directly at the exhaust pipe, as opposed to measurements from a dilution tunnel.
Technical Paper

Diesel EGR Cooler Fouling with Ni-Fe-Cr-Al DPF at Freeway Cruise

2010-10-05
2010-01-1955
This study investigates the effect of diesel particulate filters (DPF) on the performance of exhaust gas recirculation (EGR) coolers. EGR coolers were tested with and without the use of a DPF and their measured performances were compared. The exhaust gas was filtered using a Ni-Fe-Cr-Al metallic foam wall flow diesel particulate filter. The DPFs used in this investigation had very low Space Velocity (SV) characteristics in order to minimize the effect of filtration on the pressure drop. Two different measurement methods were employed to determine particulate matter (PM) emission levels at locations before and after the DPF. The first method involved the collection of PM on quartz filters followed by thermal analysis of the filters to monitor the removal of soot, semi-volatile organics, and sulfate across the DPF. The second method measured the time resolved PM mass in the exhaust with a Dekati Mass Monitor.
Journal Article

Effects of B20 versus ULSD Fuel on Diesel Engine PM Emissions and Aftertreatment Performance

2010-04-12
2010-01-0790
A detailed study is undertaken to examine how 2010+ diesel engine exhaust emissions change when a soybean-derived B20 biodiesel fuel is used instead of a conventional ultra-low sulfur diesel fuel and to investigate how these changes impact the aftertreatment system. Particulate matter (PM) emissions for each fuel are characterized in terms of mass emissions, size distributions, organic versus soot fraction, metals content, and particle morphology. PM mass recorded by Dekati Mass Monitor, thermal analysis of quartz filters, and calculated from particle size distributions consistently shows a 2 - 3 fold decrease in engine-out soot emissions over a wide mid-load range when changing from ULSD to B20 fuel. This is partly due to a decrease in particle number and partly to a decrease in average size. HC and NO emissions, in contrast, exhibit little change with fuel type.
Journal Article

Using Ejector Diluters to Sample Vehicle Exhaust at Elevated Pressures and Temperatures

2008-10-06
2008-01-2434
This paper presents an alternative and relatively simple method which allows the use of ordinary ejector-type diluters over a wide range of sample inlet conditions including elevated pressures and temperatures. After calibration of the ejector diluter, the dilution can be accurately characterized using only the pressures at the inlet and the outlet of the diluter and the sample temperature. The method is based on a semi-empirical, stationary model taking into account the critical parameters needed to predict the dilution factor. Under steady state operation it achieves accuracies estimated to be below ±8% (95% confidence interval) for diluter inlet pressures in the range of 1000 - 4000 mbar absolute and temperatures between 20 - 200°C. Performance under actual vehicle testing conditions is evaluated upstream of the DPF for a diesel vehicle run on a chassis dynamometer.
X