Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

The Effect of Swirl on the Flow Uniformity in Automotive Exhaust Catalysts

2017-10-08
2017-01-2384
In aftertreatment system design, flow uniformity is of paramount importance as it affects aftertreatment device conversion efficiency and durability. The major trend of downsizing engines using turbochargers means the effect of the turbine residual swirl on the flow needs to be considered. In this paper, this effect has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. With no swirl, the flow in the catalyst monolith is highly non-uniform with maximum velocities near the diffuser axis. At high swirl levels, the flow is also highly nonuniform with the highest velocities near the diffuser wall.
Journal Article

Methodology for Modelling a Combined DPF and SCR Catalyst with the Porous Medium Approach in CFD

2014-10-13
2014-01-2819
In an attempt to reduce particulate and NOx emissions from Diesel exhaust, the combined DPF and SCR filter is now frequently chosen as the preferred catalyst. When this device functions effectively it saves valuable packaging space in a passenger vehicle. As part of its development, modelling of its emissions performance is essential. Single channel modelling would seem to be the obvious choice for an SCRF because of its complex internal geometry. This, however, can be computationally demanding if modelling the full monolith. For a normal flow-through catalyst monolith the porous medium approach is an attractive alternative as it accounts for non-uniform inlet conditions without the need to model every channel. This paper attempts to model an SCRF by applying the porous medium approach. The model is essentially 1D but as with all porous medium models, can very easily be applied to 3D cases once developed and validated.
Journal Article

An Assessment of CFD Applied to Steady Flow in a Planar Diffuser Upstream of an Automotive Catalyst Monolith

2014-10-13
2014-01-2588
Flow maldistribution across automotive exhaust catalysts significantly affects their conversion efficiency. Flow behaviour can be predicted using computational fluid dynamics (CFD). This study investigates the application of CFD to modelling flow in a 2D system consisting of a catalyst monolith downstream of a wide-angled planar diffuser presented with steady flow. Two distinct approaches, porous medium and individual channels, are used to model monoliths of length 27 mm and 100 mm. Flow predictions are compared to particle image velocimetry (PIV) measurements made in the diffuser and hot wire anemometry (HWA) data taken downstream of the monolith. Both simulations compare favourably with PIV measurements, although the models underestimate the degree of mixing in the shear layer at the periphery of the emerging jet. Tangential velocities are predicted well in the central jet region but are overestimated elsewhere, especially at the closest measured distance, 2.5 mm from the monolith.
Technical Paper

Modelling of NOx Conversion in a 1D Diesel Engine Exhaust SCR Catalyst System under Transient Conditions Using Ammonia Gas as the Reductant

2012-09-10
2012-01-1743
Use of selective catalytic reduction technology is the most popular strategy for removing NOx from lean diesel exhaust. The reductant is essentially ammonia and this has been supplied as a spray of urea droplets, but more recently alternative technology where ammonia gas is released from a storage medium has become a viable alternative. Experiments have been carried out on an engine test rig run to steady state conditions using NOx composed of either 25% or 50% of NO₂, with ammonia gas as the reductant. This was a 1D study where a long 10 degree diffuser provided uniform temperature and velocity profiles to the SCR catalyst brick. Under the transient conditions that occur during drive cycles, the dosing of the ammonia can deviate from the optimum. In this study, the dosage rate of ammonia was held at a fixed value, while the engine load was varied.
Technical Paper

Tuning the Standard SCR Reaction Kinetics to Model NO Conversion in a Diesel Engine Exhaust SCR Catalyst System Under Steady State Conditions in 1D and 3D Geometries Using Ammonia Gas as the Reductant

2012-09-10
2012-01-1636
Removal of NOx from lean diesel exhaust can be achieved by the use of selective catalytic reduction technology. The supplied reductant is often ammonia, either as urea or as ammonia gas released from a storage medium. Experiments have been carried out on an engine test rig run to steady state conditions using NOx composed mainly of NO, with ammonia gas as the reductant. This was essentially a 1D study because a long 10 degree diffuser was used to provide uniform temperature and velocity profile to the SCR catalyst brick in the test exhaust system. Tuning of the standard reaction, the NO SCR reaction, in a kinetic scheme from the literature and adjustment of the ammonia adsorption kinetics achieved improved agreement between the measurements and CFD simulations. This was carried out for studies at exhaust gas temperatures between 200 and 300°C.
Technical Paper

Spatial Conversion Profiles within an SCR in a Test Exhaust System with Injection of Ammonia Gas Modelled in CFD using the Porous Medium Approach

2010-10-25
2010-01-2089
Modeling of SCR in diesel exhaust systems with injection of urea spray is complex and challenging but many models use only the conversion observed at the brick exit as a test of the model. In this study, the case modeled is simplified by injecting ammonia gas in nitrogen in place of urea, but the spatial conversion profiles along the SCR brick length at steady state are investigated. This is a more rigorous way of assessing the ability of the model to simulate observations made on a test exhaust system. The data have been collected by repeated engine tests on eight different brick lengths, all which were shorter than a standard-sized SCR. The tests have been carried out for supplied NH₃ /NOx ratios of a 1.5, excess ammonia, a 1.0, balanced ammonia, and a 0.5, deficient ammonia. Levels of NO, NO₂ and NH₃ have been measured both upstream and downstream of the SCR using a gas analyzer fitted with ammonia scrubbers to give reliable NOx measurements.
Technical Paper

Experimental Study of SCR in a Light-Duty Diesel Exhaust to Provide Data for Validation of a CFD Model Using the Porous Medium Approach

2010-04-12
2010-01-1177
Removal of NOx from a light-duty diesel automotive exhaust system can be achieved by SCR reactions using aqueous urea spray as the reductant. Measurements of emissions from such a system are necessary to provide data for CFD model validation. A test exhaust system was designed that featured an expansion can, nozzle and diffuser arrangement to give a controlled flow profile to define an inlet boundary for a CFD model and to approximate to one-dimensional flow. Experiments were carried out on the test exhaust using injection of either ammonia gas in nitrogen or aqueous urea spray. Measurements were made of NO, NO₂ and NH₃ at inlet to and exit from the SCR using a CLD analyzer. The NO and NO₂ profiles within the bricks were found by measuring at the exit from different length bricks. The spray and gas measurements were compared, and insights into the behavior of the droplets upstream and within the bricks were obtained.
Technical Paper

A NOX Trap Study Using Fast Response Emission Analysers for Model Validation

2006-04-03
2006-01-0685
Lean burn after treatment systems using NOX traps for reducing emissions from diesel exhausts require periodic regeneration after each storage stage. Optimising these events is a challenging problem and a model capable of simulating these processes would be highly desirable. This study describes an experimental investigation, which has been designed for the purpose of validating a NOX trapping and regenerating model. A commercial computational fluid dynamics (CFD) package is used, to model NOX trapping and regeneration, using the porous medium approach. This approach has proved successful for three way catalysis modelling. To validate the model a one-dimensional NOX trap system has been tested on a turbocharged, EGR cooled, direct injection diesel engine controlled with an engine management system via DSPACE. Fast response emission analysers have been used to provide high resolution data across the after-treatment system for model validation.
Technical Paper

Modelling of Phosphorus Poisoning Using Computational Fluid Dynamics and its Effect on Automotive Catalyst Performance

2004-06-08
2004-01-1889
Accumulation of phosphorus in an automotive catalyst is detrimental to catalyst performance, leading to partial or total deactivation. The deactivation model described in this paper utilises CFD to derive a one-dimensional mathematical solution to obtain phosphorus accumulation profiles down the length of a catalyst. The early work of Oh and Cavendish [1] is the basis for this study. A model output, θ, represents the fraction of catalytic surface area that is deactivated. This poisoned fraction is shown to build up locally depending on exposure time to phosphoric acid (H3PO4) in the exhaust flow. Having obtained the poisoned fraction from the model as a function of poison exposure time, θ is used to predict light off times and conversion efficiencies during the deactivation process through incorporation of a kinetic reaction scheme. The model provides a good representation of the phenomena noted in real catalysts; i.e. delayed light off times.
Technical Paper

Pulsating Flow Maldistribution within an Axisymmetric Catalytic Converter - Flow Rig Experiment and Transient CFD Simulation

2003-10-27
2003-01-3070
This paper investigates the flow maldistribution across the monolith of an axisymmetric catalyst assembly fitted to a pulsating flow test rig. Approximately sinusoidal inlet pulse shapes with relatively low peak/mean ratio were applied to the assembly with different amplitudes and frequencies. The inlet and outlet velocities were measured using Hot Wire Anemometry. Experimental results were compared with a previous study, which used inlet pulse shapes with relatively high peak/mean ratios. It is shown that (i) the flow is more maldistributed with increase in mass flow rate, (ii) the flow is in general more uniformly distributed with increase in pulsation frequency, and (iii) the degree of flow maldistribution is largely influenced by the different inlet velocity pulse shapes. Transient CFD simulations were also performed for the inlet pulse shapes used in both studies and simulations were compared with the experimental data.
Technical Paper

A Comparison of Steady, Pulsating Flow Measurements and CFD Simulations in Close Coupled Catalysts

2001-09-24
2001-01-3662
Performance improvements of automotive catalytic converters can be achieved by improving the flow distribution of exhaust gases within the substrate. The flow distribution is often assumed to be adequately described by measurements obtained from steady flow rigs. An experimental study was carried out to characterise the flow distribution through the substrate of a close-coupled catalytic converter for both steady and pulsating conditions on a flow rig and on a motored engine. Computational fluid dynamic (CFD) simulations were also performed. On the flow rig, the flow from each port was activated separately discharging air to different regions of the substrate. This resulted in a high degree of flow maldistribution. For steady flow maldistribution increased with Reynolds number. Pulsating the flow resulted in a reduction in flow maldistribution. Different flow distributions were observed on the motored engine when compared to composite maps derived from the rig.
Technical Paper

A Study of the Effect of Flow Pulsations on the Flow Distribution within Ceramic Contoured Catalyst Substrates

2001-05-07
2001-01-1996
This study examines the effect of pulsating flow on the flow distribution through contoured substrates. Three ceramic contoured substrates of equal volume were assessed. Two of the substrates were cone shaped with different cone angles and one had a dome shaped front face. The flow distribution was measured for a range of flow rates and pulsation frequencies. Computational Fluid Dynamics (CFD) simulations were also performed. It is shown how a contoured substrate can provide improvements in flow uniformity and that they are less sensitive to changes in flow rate and pulsation frequency when compared to the case of a standard substrate. Improvements in the prediction of flow distribution are reported when substrate “entrance effects” are accounted for.
Technical Paper

Simulating Heat Transfer in Catalyst Substrates with Triangular and Sinusoidal Channels and the Effect of Oblique Inlet Flow

2000-03-06
2000-01-0206
Heat transfer in automotive exhaust catalyst systems with metallic substrates is modeled using a commercial Computational Fluid Dynamics (CFD) code. The substrate channels are modeled by approximating their geometry as both triangular and sinusoidal. The effect of the packing arrangement of adjacent channels is investigated. The effect of the angle of the flow entering ceramic substrate monoliths on the localised heat transfer is also studied and the related implications for catalyst aging and light off deduced.
Technical Paper

A Study of the Flow Performance of Ceramic Contoured Substrates for Automotive Exhaust Catalyst Systems

1999-10-25
1999-01-3626
Conversion efficiency, durability and pressure drop of automotive exhaust catalysts are dependent on the flow distribution within the substrate. This study examines the effect on flow distribution using substrates which feature contoured front faces. Three ceramic contoured substrates of equal volume were assessed. Two of the substrates were cone shaped with different cone angles and one had a dome shaped front face. Pressure drop and flow distribution was measured for a range of flow rates and substrate positions. Computational Fluid Dynamics (CFD) simulations were also performed to provide insight into flow behaviour. It is shown how a contoured substrate can provide improvements in flow uniformity and pressure drop when compared to the case of a standard non-contoured substrate.
X