Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

The Influence of Autonomous Driving on Passive Vehicle Dynamics

2018-04-03
2018-01-0551
Traditional vehicles are designed to be inherently stable. This is typically obtained by imposing a large positive static margin (SM). The main drawbacks of this approach are the resulting understeering behavior of the vehicle and, often, a decrease in peak lateral grip due to oversized rear tire characteristics. On the other hand, a lower SM can cause a greater time delay in the vehicle’s response which hardens the control of a vehicle at limit handling for a human being. By introducing advanced autonomous driving features into future vehicles, the human factor can be excluded in limit handling manoeuvers (e.g., obstacle avoidance occurrences) and, consequently, the need for a high SM (i.e., high controllability for human drivers) can be avoided. Therefore, it could be possible to exploit the passive vehicle dynamics and enhance the performance, both in terms of peak grip and transient response.
Technical Paper

Target setting and structural design of an EPS-in-the-Loop test bench for steering feeling simulation

2016-04-05
2016-01-1559
The adoption of Electrical Power Steering (EPS) systems has greatly opened up the possibilities to control the steering wheel torque, which is a critical parameter in the subjective and objective evaluation of a new vehicle. Therefore, the tuning of the EPS controller is not only becoming increasing complicated, containing dozens of parameters and maps, but it is crucial in defining the basic DNA of the steering feeling characteristics. The largely subjective nature of the steering feeling assessment means that EPS tuning consists primarily of subjective tests on running prototypes. On account of that, this paper presents an alternative test bench for steering feeling simulation and evaluation. It combines a static driving simulator with a physical EPS assisted steering rack. The end goal is to more accurately reproduce the tactile feedback to the driver by including a physical hardware in lieu of complicated and difficult to obtain software models.
X