Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

The Virtual Engine Development for Enhancing the Compression Ratio of DISI-Engines Combining Water Injection, Turbulence Increase and Miller Strategy

2020-06-30
2020-37-0010
The increase in efficiency is the focus of current engine development by adopting different technologies. One limiting factor for the rise of SI-engine efficiency is the onset of knock, which can be mitigated by improving the combustion process. HCCI/SACI represent sophisticated combustion techniques that investigate the employment of pre-chamber with lean combustion, but the effective use of them in a wide range of the engine map, by fulfilling at the same time the need of fast load control are still limiting their adoption for series engine. For these reasons, the technologies for improving the characteristics of a standard combustion process are still largely investigated. Among these, water injection, in combination with the Miller cycle, offers the possibility to increase the knock resistance, which in turn enables the rise of the engine geometric compression ratio.
Journal Article

Numerical Investigation of Direct Gas Injection in an Optical Internal Combustion Engine

2018-04-03
2018-01-0171
Direct injection (DI) of compressed natural gas (CNG) is a promising technology to increase the indicated thermal efficiency of internal combustion engines (ICE) while reducing exhaust emissions and using a relatively low-cost fuel. However, design and analysis of DI-CNG engines are challenging because supersonic gas jet emerging from the DI injector results in a very complex in-cylinder flow field containing shocks and discontinuities affecting the fuel-air mixing. In this article, numerical simulations are used supported by validation to investigate the direct gas injection and its influence on the flow field and mixing in an optically accessible ICE. The simulation approach involves computation of the in-nozzle flow with highly accurate Large-Eddy Simulations, which are then used to obtain a mapped boundary condition. The boundary condition is applied in Unsteady Reynolds Averaged Navier-Stokes simulations of the engine to investigate the in-cylinder velocity and mixing fields.
Journal Article

Characterization of Hollow Cone Gas Jets in the Context of Direct Gas Injection in Internal Combustion Engines

2018-04-03
2018-01-0296
Direct injection (DI) compressed natural gas (CNG) engines are emerging as a promising technology for highly efficient and low-emission engines. However, the design of DI systems for compressible gas is challenging due to supersonic flows and the occurrence of shocks. An outwardly opening poppet-type valve design is widely used for DI-CNG. The formation of a hollow cone gas jet resulting from this configuration, its subsequent collapse, and mixing is challenging to characterize using experimental methods. Therefore, numerical simulations can be helpful to understand the process and later to develop models for engine simulations. In this article, the results of high-fidelity large-eddy simulation (LES) of a stand-alone injector are discussed to understand the evolution of the hollow cone gas jet better.
Technical Paper

Modeling and Numerical Investigation of Auto-Ignition and Megaknock in Boosted Gasoline Engines

2017-03-28
2017-01-0519
The performance of modern boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition as well as megaknock. The main objective of the present work is to develop a predictive combustion model to investigate auto-ignition and megaknock events at high load conditions in gasoline engines. A quasi one-dimensional combustion simulation tool has been developed to model abnormal combustion events in gasoline engines using detailed chemical kinetics and a multi zone wall heat transfer model. The model features six boundary layers representing specific geometrical features such as liner and piston with individual wall temperatures and chemistry to accurately track the individual zone’s thermodynamic properties. The accuracy of the utilized auto-ignition and one-dimensional spark ignition combustion models was demonstrated by validating against experimental data.
Technical Paper

Investigation into Occurrence of Megaknock and Auto-Ignition in GTDI Engines

2017-03-28
2017-01-0690
The performance of boosted gasoline engines is limited at high loads by knock, stochastic Low Speed Pre-Ignition, and Megaknock. An investigation has been carried out on the occurrence of abnormal combustion and megaknock in a 1.6 L GTDI engine with the aim to determine the causes of such phenomena. A classification of abnormal combustion events and causes is presented in order to facilitate a consistent terminology. The experiments specifically focus on the effects of exhaust residual gas on occurrence of megaknock in multi-cylinder engines. The results showed that while a misfire will not lead to megaknock, a very late combustion in one cycle, in one cylinder may lead to megaknock in the following cycle in the same or adjacent cylinder. Additionally, a recently developed multi-zone model was used to analyze the role of residual gas on auto-ignition.
X