Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Integrating the Curriculum using a Bench-Scale Hybrid Power Train

2014-04-01
2014-01-0626
The Rowan University Mechanical Engineering program is studying the use of a long-term (five semester) design project on student learning and concept retention. The project, a bench-scale hybrid electric powertrain system, is designed, analyzed and fabricated by students in five modules, starting in their sophomore year and culminating in their final semester as seniors (see prior ASEE publication [1]). This complex project has been selected in order to integrate the core mechanical engineering courses: Mechanical Design, Thermodynamics, System Dynamics and Control, and Fluid Mechanics. A bench-scale hybrid-electric vehicle powertrain has sufficient complexity to involve all Mechanical Engineering disciplines and the simplicity to be built by students over the course of five semesters. In addition, hybrid-electric technology is at the cutting-edge of automotive technology, and has been found to hold a special fascination for most mechanical engineering students.
Technical Paper

Neck Pendulum Test Modifications for Simulation of Frontal Crashes

2008-04-14
2008-01-0518
Pediatric Anthropomorphic Test Devices (ATDs) are valuable tools for assessing the injury mitigation capability of automotive safety systems. The neck pendulum test is widely used in biofidelity assessment and calibration of the ATD neck, and neck moment vs. angle response requirements are the metrics typically derived from the test. Herein, we describe the basis and methods for modifying the neck pendulum such that it more closely reflects base of the neck accelerations observed by a restrained three-year old ATD in a frontal crash. As a measure of base of the neck acceleration, the x-direction chest acceleration from thirty-one restrained Hybrid III three-year-old ATDs in vehicle frontal crash tests were analyzed. The standard neck pendulum yielded a mean peak acceleration that is 1.2x the peak of vehicle base of the neck accelerations, 1.6x the average, and 0.24x the duration.
X