Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Evaluation of Sound Radiation from Exhaust Muffler Shell-A Novel Experimental Approach

2013-03-25
2013-01-0116
Shorter product development cycles, densely packed engine compartments and intensified noise legislation has increased the need for accurate predictions of passenger cars Exhaust system noise at early design stages. The urgent focus on the increasing CO2 emissions and the efficiency of IC-engines as well as upcoming technologies might adversely affect the noise emission from an exhaust system, so it is becoming increasingly important to evaluate the sub system level noise emissions in an early design stage in order to predict and optimize the exhaust system performance. Engine performance and vehicle NVH characteristics are two important parameters on which the design of the exhaust system has major influence. The reduction of exhaust noise is a very important factor in controlling the exterior and interior noise levels of vehicles, particularly to reach future target values of the pass-by noise and sound engineering for the vehicle.
Technical Paper

Analysis of Flow Induced Noise in a Passenger Car Exhaust System - An Experimental and Numerical Approach

2011-05-17
2011-01-1528
A muffler or silencer is an integral part of the exhaust system and is a device used to prevent sound from reaching the openings of the exhaust duct and radiating as far field noise. Different acoustical design and analysis techniques are used to predict the acoustical performance of exhaust systems. Flow noise from exhaust tail pipe is one of the major noise sources in a vehicle. Flow noise is generated mainly during fast acceleration operating condition due to complex flow behavior. In this paper, we have studied the detailed flow field and tried to establish an analyses procedure for flow noise prediction. The flow analysis is carried out in commercial CFD solver Star CCM+. The transient engine boundary conditions are obtained from the experimental testing. The flow noise generated from the muffler was calculated by acoustic analogy of Lighthill using the above boundary conditions.
Technical Paper

Correlation of Vehicle Dynamics & NVH Performance with Body Static & Dynamic Stiffness through CAE and Experimental Analysis

2010-04-12
2010-01-1137
In a highly competitive market, one of the major challenges for an automobile designer is to lower the product cost while improving the performance. Therefore, from the vehicle comfort point of view, achieving a good ride, handling and NVH performance, while satisfying the low cost and low weight target needs attention from the concept stage of the development cycle. To achieve this balance, it is important to optimize the static and dynamic stiffness of the vehicle body. This paper focuses on the effect of vehicle body stiffness on the ride, handling and NVH parameters. It also addresses the relation between static and dynamic stiffness of the vehicle. The correlation of the stiffness values with the ride, handling and NVH performance is also studied through various experiments on the actual vehicle
X