Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of High Levels of Boost and Recirculated Exhaust Gas on Diesel Combustion Characteristics at Part Load

2014-04-01
2014-01-1245
Future diesel combustion systems may operate with significantly higher levels of boost and EGR than used with present systems. The potential benefits of higher boost and EGR were studied experimentally in a single-cylinder diesel engine with capability to adjust these parameters independently. The objective was to study the intake and exhaust conditions with a more optimum combustion phasing to minimize fuel consumption while maintaining proper constraints on emissions and combustion noise. The engine was tested at four part-load operating points using a Design of Experiments (DOE) approach. Two of the operating points correspond to low-speed and low-load conditions relevant for the New European Driving Cycle (NEDC). The other two points focus on medium load conditions representative of the World-wide harmonized Light-duty Test Procedures (WLTP).
Technical Paper

Cavitation effects on spray characteristics in the near-nozzle field

2009-09-13
2009-24-0037
In this paper, a special technique for visualizing the first 1.5 millimetres of the spray has been applied to examine the link between cavitation phenomenon inside the nozzle and spray behaviour in the near nozzle field. For this purpose, a real Diesel axi-symmetric nozzle has been analyzed. Firstly, the nozzle has been geometrically and hydraulically characterized. Mass flow measurements at stationary conditions have allowed the detection of the pressure conditions for mass flow choking, usually related with cavitation inception in the literature. Nevertheless, with the objective to get a deeper knowledge of cavitation phenomenon, near nozzle field visualization technique has been used to detect cavitation bubbles injected in a pressurized chamber filled with Diesel fuel. Using backlight illumination, the differences in terms of density and refractive index allowed the distinction between vapour and liquid fuel phases.
Journal Article

Macroscopic Behavior of Diesel Sprays in the Near-Nozzle Field

2008-04-14
2008-01-0929
The objective of the paper is the characterization of the macroscopic behavior of Diesel sprays by focusing in at the first instants of the injection process at which the spray is clearly affected by the injector needle dynamic. There are several works dealing with the characterization of Diesel sprays in stationary conditions. Most of them conclude with empirical correlations which predict spray tip penetration as a function of the most important parameters involved in the injection process, such as: injection pressure, gas ambient density, hole diameter and time elapsed from the start of injection. In all these experiments, authors find similar power law dependencies with more or less high level of confidence. Nevertheless, few works have tried to validate or to obtain new correlations for the first instants of the injection process where the spray develops in not stationary conditions because of the influence of injector needle lift.
X