Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Analytical Investigation of Urea Deposits in SCR System

2015-04-14
2015-01-1037
An aqueous urea solution is used as the source of ammonia for selective catalytic reduction (SCR) of NOx to reduce the emissions of NOx in the exhaust of diesel vehicles. However, the decomposition of urea into ammonia is not always complete, resulting in solid urea deposit formation in the decomposition tube or on the SCR catalyst. These solid deposits can impede the flow of the exhaust gases (and uniformity of NH3 supply) and reduce SCR catalyst performance over time. To minimize the formation of urea deposit and to meet EPA NOx emission regulations, it is important to understand the chemistry of formation or removal of the deposit in the decomposition tube and SCR catalyst. In this report, IR spectroscopy, UV-visible spectroscopy, thermogravimetric analysis and elemental analysis have been used to determine the chemical composition of the solid urea deposits formed by the thermal decomposition of urea.
Technical Paper

Microstructural Analysis of Deposits on Heavy-Duty EGR Coolers

2013-04-08
2013-01-1288
Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards and has negative impacts on cooler sizing and engine performance. In order to improve our knowledge of cooler fouling as a function of engine operating parameters and to predict and enhance performance, 19 tube-in-shell EGR coolers were fouled using a 5-factor, 3-level design of experiments with the following variables: (1) EGR flow rate, (2) EGR inlet gas temperature, (3) coolant temperature, (4) soot level, and (5) hydrocarbon concentration. A 9-liter engine and ULSD fuel were used to form the cooler deposits. Coolers were run until the effectiveness stabilized, and then were cooled down to room temperature and run for an additional few hours in order to measure the change in effectiveness due to shut down. The coolers were cut open and the mass per unit area of the deposit was measured as a function of distance down the tube.
Technical Paper

Engine Test Protocol for Accelerated Ash Loading of a Diesel Particulate Filter

2011-04-12
2011-01-0607
Diesel particulate filters with a quantity of ash corresponding to the service interval (4500 hours) are needed to verify that soot loading model predictions remain accurate as ash accumulates in the DPF. Initially, long-term engine tests carried out for the purpose of assessing engine and aftertreatment system durability provided ash-loaded DPFs for model verification. However, these DPFs were found to contain less ash than expected based on lube oil consumption, and the ash was distributed uniformly along the length of the inlet channels, as opposed to being in the form of a plug at the outlet end of those channels. Thus, a means of producing DPFs with higher quantities of ash, distributed primarily as plugs, was required. An engine test protocol was developed for this purpose; it included the following: 1) controlled dosing of lube oil into the fuel feeding the engine, 2) formation of a soot cake within the DPF, and 3) periodic active regenerations to eliminate the soot cake.
Technical Paper

Characterization of DPF Ash for Development of DPF Regeneration Control and Ash Cleaning Requirements

2011-04-12
2011-01-1248
The accumulation of ash in a Diesel Particulate Filter (DPF) eventually results in an increase in the pressure drop across the exhaust system component. This situation translates into a reduced capacity for soot, and requires an increased frequency of active regenerations to eliminate this soot. For heavy duty diesel applications, the lifetime of the DPF is long enough to expect that cleaning of the ash from the DPF will be required. The physico-chemical characteristics of the ash as a function of temperature and time will have an impact on the effectiveness of this cleaning. To develop a deeper understanding of this subject, four different samples of ash were characterized in this study that were collected under active or passive regeneration from exhaust systems of engines running on different fuels: ultra low sulfur diesel (ULSD), and biodiesel fuels B20 and B100. The lubricant, an API CJ-4 oil, was used for each engine test.
X