Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Modeling of Dual Layer Ammonia Slip Catalysts (ASC)

2012-04-16
2012-01-1294
In recent years, ammonia slip catalysts (ASC) are being used downstream of an SCR system to minimize the ammonia slip. The dual-layer ASC is more attractive for its bi-functionality in reducing the ammonia and NOX emissions. It consists of two layers with the upper layer comprising a component with SCR functionality and the lower layer a PGM containing catalyst with oxidation functionality. Thus, both oxidation and SCR reactions take place in two different layers and are interlinked by the inter-layer mass transfer mechanism. In addition, adsorption and desorption kinetics between the gas and solid phases play a significant role. Mathematically, the overall system is a complex system of mass, momentum and energy transfer equations with temporal and spatial variables in both axial and radial directions. In this work, we focus on devising a suitable, computationally inexpensive model for such ASCs to be efficiently used for design, control and system optimization studies.
Technical Paper

Development and Validation of a Cu-Zeolite SCR Catalyst Model

2011-04-12
2011-01-1299
A one-dimensional numerical model for a Cu-zeolite SCR catalyst has been developed. The model is based on kinetics developed from laboratory microreactor data for the various NH₃-NOX reactions, as well as for NH₃ oxidation. The kinetic scheme used is discussed and evidence for it presented. The model is capable of predicting the conversion of NO and NO₂, NH₃ slip and the formation of N₂O, as well as effects associated with NH₃ storage and desorption. To obtain a good prediction of catalyst temperature during cold start tests, it was found necessary to include storage and desorption of H₂O in the model; storage of H₂O is associated with a sizable exotherm and the subsequent desorption of this water produces a correspondingly large endotherm.
Technical Paper

Fe-Zeolite SCR Model Development, Validation and Application

2011-04-12
2011-01-1304
Selective Catalytic Reduction (SCR) technology has been widely studied for removal of NOX from the exhaust of diesel engines. To design and optimize diesel engine aftertreatment systems including an SCR catalyst component, a reliable SCR model is a very useful tool, to aid in system integration and control algorithm testing. In this paper, the development of a one-dimensional numerical model for a Fe-Zeolite-based SCR catalyst (hydrothermally aged for 100 hours at 650°C in 10% H₂O in air) is presented, followed by its validation and application. The resulting model is capable of predicting NOX reduction efficiency under various operating conditions as a function of gas hourly space velocity (SV), temperature, NO₂/NOX ratio and NH₃ to NOX (ANR) ratios; NH₃ slip and N₂O formation are also correctly predicted by the model. Extensive validation of the model has been carried out against engine test data for both steady state light-off and the heavy-duty FTP transient cycle (HD-FTP).
X