Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 13 of 13
Technical Paper

High-Fidelity CAE Simulation of 4-Cylinder 4-Stroke Hollow Assembled Camshaft under Multi Axial Load

2023-04-11
2023-01-0163
The major area in which the automotive manufacturers are working is to produce high-performance vehicles with lighter weight, higher fuel economy and lower emissions. In this regard, hollow camshafts are widely used in modern diesel and gasoline engines due to their inherent advantages of less rotational inertia, less friction, less weight and better design flexibility. However, the dynamic loads of chain system, valve train and fuel injection pump (if applicable) makes it challenging to design over-head hollow camshafts with the required factor of safety (FOS). In the present work, high-fidelity FE model of a hollow camshaft assembly is simulated to evaluate the structural performance for assembly loads, valve train operating loads, fuel injection pump loads and chain system loads. The investigation is carried out in a high power-density (70 kW/lit) 4-cylinder in-line diesel engine.
Technical Paper

Random Vibration Fatigue Evaluation of Plastic Components in Automotive Engines

2022-03-29
2022-01-0765
Light weighting in modern automotive powertrains call for use of plastics (PP, PA66GF35) for cam covers, intake manifolds and style covers, and noise encapsulation covers. Conventionally, in early stage of design these components are evaluated for static assembly loads & gasket compression loads at component level. However, engine dynamic excitations which are random in nature make it challenging to evaluate these components for required fatigue life. In this paper, robust methodology to evaluate the fatigue life of engine style cover assembly for random vibration excitations is presented. The investigation is carried out in a high power-density 4-cylinder in-line diesel engine. The engine style cover (with Polyurethane foam) is mounted on cam cover and the intake manifold using steel studs and rubber isolators to suppress the radiated noise.
Technical Paper

Methodology Development for Multibody Simulation to Understand Shift Shock Behaviour

2021-04-06
2021-01-0714
One of the critical challenges for transmission design is to predict the gear shift dynamics accurately and to ensure smooth gear shift quality for different driver behaviors while shifting. This calls for detailed understanding of the RWUPs. Through prototype testing, understanding the influence of different parameters is costly and time consuming. Also, the testing does not provide necessary visualization of exact physics and the identification of issues is difficult. One of such typical concerns is shift shock while shifting the gear. Sudden gear engagement or disengagement leads to impact torque in drivetrain during shifting of gears, which in turn results in winding and unwinding of powertrain due to vehicle Inertia. This induces noise and vibration that affects driver comfort. The paper presents, the methodology to frontload prediction of dynamics of gear shifting that leads to shift shock behavior.
Technical Paper

Sensitivity Analysis and Experimental Verification of Automotive Transmission Gearbox Synchronizer Gear Shift Quality

2020-09-25
2020-28-0386
Synchronizer is the key element for the smoother gear shift operation in the constant mesh transmission. In the gear shift operation, the double bump occurs at the contact between the sleeve teeth and the clutch body ring teeth after the full synchronization. The double bump is random in nature and the dynamics is difficult to predict. The double bump gives a reaction force to the driver and affects the gear shift quality. This paper focus on the sensitivity analysis of the synchronizer ring index percentage and the clutch body ring asymmetric chamfer angle to reduce the occurrence and magnitude of the double bump. The system level simulation model is developed using 1D simulation tool. The modeling is done after complete declutching event so that there is no power supply to the transmission. The model can handle both upstream and downstream reflected inertia depending upon the gear shift event.
Technical Paper

Hybrid Optimization Methodology for Flexplate of Automatic Transmission

2020-04-14
2020-01-0916
For Automatic transmission application, crankshaft torque is transferred to torque converter through flex plate. As the flex plate has no functional requirement of storing energy as in case of Manual Transmission (MT) flywheel, flex plate design can be optimized to great extent. Flex plate structure must have compliance to allow the axial deformation of torque convertor due to ballooning pressure generated inside the converter. Flex plate experiences dynamic torque and centrifugal forces due to high rotational speed. It should have compliance to accommodate the assembly misalignments with torque convertor in both axial and radial directions. In this paper, sequential and hybrid optimization techniques are described to optimize the flex plate design with stress, stiffness and mass as design constraints. The load path, corrugation length and axial stiffness of flex plate captured accurately using this hybrid optimization.
Technical Paper

Split Type Crankcase Design for a Single Cylinder LCV Diesel Engine

2017-01-10
2017-26-0040
Serious efforts have been put in space to focus on lowering the fuel consumption and CO2 discharge to the environment from Automotive Diesel Engines. Though more focus is put on material up gradation approach on weight perspective, it is accompanied by undesirable cost increase and manufacturing complexity. As a part of development of a single cylinder engine for a light commercial vehicle application, a unique approach of integrated split type crankcase design is designed and developed. This design have addressed all the key factors on Weight, Cost and Manufacturing perspectives. The split type crankcase configuration, particularly middle-split configuration, integrates the oil sump, front cover and flywheel housing in a single unit beneficial from the point of view of reducing engine weight and thus reducing the manufacturing costs. This crankcase is also excellent from the serviceability point of view.
Technical Paper

Gasoline Engine Connecting Rod Buckling Load and Post Buckling Deformation Prediction through CAE for Lightweight Design

2016-04-05
2016-01-1343
Super-knocking event generates high pressure pulse in gasoline engine, the predominant failure mode in these cases is connecting rod buckling. Two major factors which affects the bucking strength of connecting rod are shank dimensions and load offset in crankpin axis. There are standard methods available for calculating buckling strength of connecting rod such as Johnson’s buckling equation, Eigenvalue method, Merchant-Rankine formula etc. Each of these methods have pros and cons. But no method caters to all the considerations accurately such as section variation in shank, load offsets, local material plasticity and geometric nonlinearity as in bending preceded by buckling. In present paper, a new methodology is developed using FEA to evaluate the connecting rod buckling strength and post buckling deformation. Comparison with eigenvalue method and theoretical results are presented. Study related to buckling load sensitivity for load offset is also presented.
Technical Paper

Virtual Drivetrain Simulation Using Adams View and Correlation with Test

2016-04-05
2016-01-1361
Reducing the vibrations in the drivetrain is one of the prime necessities in today’s automobiles from NVH and strength perspectives. The virtual drivetrain simulation methodology to predict the driveline induced excitations transmitted to vehicle is developed for three cylinder engine using Adams View. The obtained mount forces from Adams dynamic simulation is correlated with the measured test data at vehicle level and the good correlation is observed. Paper discusses on the methodology of virtual drivetrain using Adams view and the correlation of measured dynamic mount forces with simulation results. This correlation gives the confidence that the developed simulation methodology can be used to get the mount forces of different orders from drivetrain.
Technical Paper

Correlation of Test with CAE of Dynamic Strains on Transmission Housing for 4WD Automotive Powertrain

2010-04-12
2010-01-0497
Reducing the vibrations in the powertrain is one of the prime necessities in today's automobiles from NVH and strength perspectives. The necessity of 4×4 powertrain is increasing for better control on normal road and off-road vehicles. This leads to bulky powertrains. The vehicle speeds are increasing, that requires engines to run at higher speeds. Also to save on material costs and improve on fuel economy there is a need for optimizing the mass of the engine/vehicle. The reduced stiffness and higher speeds lead to increased noise and vibrations. One more challenge a powertrain design engineer has to face during design of its transmission housings is the bending / torsional mode vibrations of powertrain assembly. This aggravates other concerns such as shift lever vibrations, shift lever rattle, rise in in-cab noise, generation of boom noise at certain speeds, etc. Hence, reducing vibrations becomes an important and difficult aspect in design of an automobile.
Journal Article

Evaluation of a 4-stroke 4-cylinder Diesel Engine Valve-train for Replacement of a Solid Camshaft with a Hollow Camshaft

2009-04-20
2009-01-0405
The use of hydroforming technique is commonly used for the manufacturing of BIW, chassis and suspension components. For low weight and cost effective solutions it is also finding application in powertrain components mainly in the engine camshafts. Weight of the valvetrain parts plays a vital role for enhancing the engine response and performance. Hollow camshafts are produced by assembling aggregate parts, i.e., cam lobes, journals, sprockets etc. on a tubular shaft. Compared to conventional solid cast or forge camshafts, hollow camshafts provide opportunities for weight reduction exceeding 60%, design flexibility to improve performance of engine and valve train because of reduced rotational inertia. In order to obtain the above benefits the valve train of an existing 4-cylinder 4-stroke diesel engine is modified by replacing the solid forged camshaft with a hollow camshaft. The main consideration in carrying out the change is that the valve train performance should be enhanced.
Technical Paper

Finite Element Analysis of Connecting Rod and Correlation with Test

2009-04-20
2009-01-0816
With the increasing need to have faster product development and yet achieve the optimum design, thrust on accurate FEA of components and system is felt. The connecting rod is an important component of the crank train and it has a significant mass contribution in multi-cylinder engine. Principal focus is directed to connecting rods having load ratio greater than or equal to 2. As the connecting rod operates in elastic range (i.e. high cycle fatigue life region) stress life approach is adopted for fatigue life evaluation. The three fold purpose of this paper is to establish an accurate FE modelling technique and analysis procedure that simulates the test conditions, aids in accurate fatigue life prediction and most importantly provides a simple procedure for virtual validation of connecting rod. To achieve this objective static strain measurement and fatigue test of connecting rod is carried out on a test bench.
Technical Paper

A Multi-disciplinary Approach for Evaluating Strength of Engine Cylinder Head and Crankcase Assembly under Thermo-Structural Loads

2009-04-20
2009-01-0819
The design and development of cylinder head and crankcase is the most critical activity in a new Engine program. These two components are subjected to complex and cyclic loading as a result of the interaction between fluid flow, heat transfer and mechanical loads. Apart from structural durability, bore distortions, the need of effective sealing at the head and crankcase joint has to be ensured. The physical validation of the structure requires the components to be developed and this is a long phase including the validation itself. Any modification due to failure or optimization at this stage can be a set back in meeting the deliverables within the given time lines. Physical testing does not provide any means of visualization of the flow and the structural deformation modes.
Technical Paper

Design and Optimization of Crankshaft Torsional Vibration Damper for a 4-Cylinder 4-Stroke Engine

2008-04-14
2008-01-1213
The problem of crankshaft torsional vibrations is inherent to the reciprocating internal combustion engines. Till date, in multi-cylinder internal combustion engines torsional vibrations which increases vibratory torque is the major reason for the failures of crankshaft due to raised fillet stresses. The torque applied to crankshaft is not constant in time, but it varies in a complex manner as a function of crankshaft position for each cylinder. The excitation that causes torsional vibrations of crankshaft is the Gas firing pulse phasing in the cylinders of an engine. The Crankshaft natural frequencies get excited several times through out the operating speed of engine by different components of firing pulse harmonics, called orders of an engine. The vibration amplitudes at these critical speeds are commonly high enough, so that the crankshaft as well as any accessory coupled to the crankshaft may fail.
X