Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Uncertainty of the Ice Particles Median Mass Diameters Retrieved from the HAIC-HIWC Dataset: A Study of the Influence of the Mass Retrieval Method

2019-06-10
2019-01-1983
In response to the ice crystal icing hazard identified twenty years ago, aviation industry, regulation authorities, and research centers joined forces into the HAIC-HIWC international collaboration launched in 2012. Two flight campaigns were conducted in the high ice water content areas of tropical mesoscale convective systems in order to characterize this environment conducive to ice crystal icing. Statistics on cloud microphysical properties, such as Ice Water Content (IWC) or Mass Median Diameter (MMD), derived from the dataset of in situ measurements are now being used to support icing certification rulemaking and anti-icing systems design (engine and air data probe) activities. This technical paper focuses on methodological aspects of the derivation of MMD. MMD are estimated from PSD and IWC using a multistep process in which the mass retrieval method is a critical step.
Technical Paper

Improvements of the PLANET System for Real-Time Satellite Data Transmission During the HAIC-HIWC Darwin Field Campaign

2015-06-15
2015-01-2147
The PLANET System was used for real-time satellite data transmission during the HAIC-HIWC Darwin field campaign (January to March 2014). The basic system was initially providing aircraft tracking, chat, weather text messages (METAR, TAF, etc.), and aeronautical information (NOTAMs) in a standalone application. In the framework of the HAIC project, many improvements were made in order to fulfill requirements of the onboard and ground science teams for the field campaign. The aim of this paper is to present the main improvements of the system that were implemented for the Darwin field campaign. New features of the system are related to the hardware component, the communication protocol, weather and tracking display, geomarkers on the map, and image processing and compression before onboard transfer.
Technical Paper

Overview of the HAIC “Space-borne Observation and Nowcasting of High Ice Water Content Regions” Sub-Project and Mid-Term Results

2015-06-15
2015-01-2123
The High Altitude Ice Crystals (HAIC) Sub-Project 3 (SP3) focuses on the detection of cloud regions with high ice water content (IWC) from current available remote sensing observations of space-based geostationary and low-orbit missions. The SP3 activities are aimed at supporting operationally the two up-coming HAIC flight campaigns (the first one in May 2015 in Cayenne, French Guyana; the second one in January 2016 in Darwin, Australia) and ultimately provide near real-time cloud monitoring to Air Traffic Management. More in detail the SP3 activities focus on the detection of high IWC from space-borne geostationary Meteosat daytime imagery, explore the synergy of concurrent multi-spectral multiple-technique observations from the low-orbit A-Train mission to identify specific signatures in high IWC cloud regions, and finally develop a satellite-based nowcasting tool to track and monitor convective systems over the Tropical Atlantic.
Technical Paper

The Use of RDT Nowcasting Tool for Detecting Convective Areas Associated with High Ice Water Content during HAIC/HIWC Field Campaign

2015-06-15
2015-01-2124
Glaciated icing conditions potentially leading to in-service event are often encountered in the vicinity of deep convective clouds. Nowcasting of these conditions with space-borne observations would be of a great help for improving flight safety and air-traffic management but still remains challenging. In the framework of the HAIC (High Altitude Ice Crystals) project, methods to detect and track regions of high ice water content from space-based geostationary and low orbit mission are investigated. A first HAIC/HIWC field campaign has been carried out in Australia in January-March 2014 to sample meteorological conditions potentially leading to glaciated icing conditions. During the campaign, several nowcasting tools were successfully operated such as the Rapid Development Thunderstorm (RDT) product that detects the convective areas from infrared geostationary imagery.
Technical Paper

HAIC/HIWC Field Campaign - Specific Findings on PSD Microphysics in High IWC Regions from In Situ Measurements: Median Mass Diameters, Particle Size Distribution Characteristics and Ice Crystal Shapes

2015-06-15
2015-01-2087
Despite past research programs focusing on tropical convection, the explicit studies of high ice water content (IWC) regions in Mesoscale Convective Systems (MCS) are rare, although high IWC conditions are potentially encountered by commercial aircraft during multiple in-service engine powerloss and airdata probe events. To gather quantitative data in high IWC regions, a multi-year international HAIC/HIWC (High Altitude Ice Crystals / High Ice Water Content) field project has been designed including a first field campaign conducted out of Darwin (Australia) in 2014. The airborne instrumentation included a new reference bulk water content measurement probe and optical array probes (OAP) recording 2D images of encountered ice crystals. The study herein focuses on ice crystal size properties in high IWC regions, analyzing in detail the 2D image data from the particle measuring probes.
X