Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Technical Paper

Safety Modeling of High Voltage Cabling in Electrified Powertrains

2017-03-28
2017-01-0361
Modeling of High Voltage (HV) wires is an important aspect of vehicle safety simulations for electrified powertrains to understand the potential tearing of the wire sheath or pinching of HV wiring. The behavior of the HV wires must be reviewed in safety simulations to identify potential hazards associated with HV wire being exposed, severed, or in contact with ground planes during a crash event. Modeling HV wire is challenging due to the complexity of the physical composition of the wire, which is usually comprised of multiple strands bundled and often twisted together to form the HV electrical conductor. This is further complicated by the existence of external insulating sheathing materials to prevent HV exposure during normal operating conditions. This paper describes a proposed method to model and characterize different types of HV wires for usage in component- and vehicle-level safety models.
Technical Paper

Thermoplastic Enclosure for a High Voltage Battery System

2017-03-28
2017-01-1190
As electrified powertrains proliferate through original equipment manufacturer vehicle offerings, the focus on system cost and weight reduction intensifies. This paper describes the development and evaluation of a High Voltage (HV) battery system enclosure molded from High Density Polyethylene (HDPE) to deliver substantial cost and weight opportunities. While previous HV battery system enclosure alternatives to steel and aluminum focus on thermoset composites and glass filled polypropylene, this solution leverages select HDPE design techniques established for fuel tanks and applies them to an HV battery system. The result is a tough, energy absorbing structure, capable of hermetic sealing, which simplifies manufacturing by eliminating nearly all fasteners.
Technical Paper

Design and CFD Simulation of a Battery Module for a Hybrid Electric Vehicle Battery Pack

2009-04-20
2009-01-1386
Computational Fluid Dynamic (CFD) analysis was performed using FLUENT to analyze the fluid thermal performance of a Battery cell container for the Ford Fusion Hybrid Electric Vehicle. The objective of the design was to maintain the cells in their desired operating temperature range with a near uniform temperature among the battery cells in the container, while minimizing energy losses associated with the pressure drop. Groupings of multiple such containers were assembled for bench test confirmation. Excellent agreement was obtained for air side pressure drop between the CFD and hardware physical properties. Multiple design iterations were made to improve the baseline design. Ultimately, the thermal gradient within the physical property was reduced to 1.8°C with a minimal increase in system pressure drop.
X