Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Experimental Investigation of Transient Response and Turbocharger Coupling for High and Low Pressure EGR Systems

2014-04-01
2014-01-1367
The transient response of an engine with both High Pressure (HP) and Low Pressure (LP) EGR loops was compared by conducting step changes in EGR fraction at a constant engine speed and load. The HP EGR loop performance was shown to be closely linked to turbocharger performance, whereas the LP EGR loop was relatively independent of turbocharger performance and vice versa. The same experiment was repeated with the variable geometry turbine vanes completely open to reduce turbocharger action and achieve similar EGR rate changes with the HP and LP EGR loops. Under these conditions, the increased loop volume of the LP EGR loop prolonged the response of intake O2 concentration following the change in air-fuel ratio. The prolonged change of intake O2 concentration caused emissions to require more time to reach steady state as well. Strong coupling between the HP EGR loop and turbochargers was again observed using a hybrid EGR strategy.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

2012-04-16
2012-01-1067
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Technical Paper

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

2011-09-11
2011-24-0062
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy. The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation.
Technical Paper

Sources and Tradeoffs for Transient NO and UHC Emissions with Low Temperature Diesel Combustion

2011-04-12
2011-01-1356
High bandwidth transient data from a multi-cylinder diesel engine operating in a low temperature combustion regime was analyzed to identify and characterize the transient response behaviors primarily responsible for transient emissions of NO and UHC. Numerous different speed and load transients as well as different combustion modes and control strategies were studied to determine how these parameters affect transient performance. Limitations in the transient response of the air system were found to be the largest contributor to transient emissions, although the mechanism by which these limitations affect performance can vary greatly depending on conditions. Analysis of the data shows that transient emissions for low temperature combustion strategies are highly dependent on cycle-to-cycle changes in intake charge conditions. No fundamental difference was observed between the transient processes controlling speed and load changes.
Technical Paper

Investigation of Transient Emissions and Mixed Mode Combustion for a Light Duty Diesel Engine

2009-04-20
2009-01-1347
The use of low temperature combustion (LTC) modes has demonstrated abilities to lower diesel engine emissions while maintaining good fuel consumption. LTC is assumed to be a viable solution to assist in meeting stringent upcoming diesel engine emissions targets, particularly nitric oxides (NOx) and particulate matter (PM). However, LTC is currently limited to low engine loads and is not a feasible solution at higher loads on production engines. A mixed mode combustion strategy must be implemented to take advantage of the benefits offered from LTC at the low loads and speeds while switching to a conventional diesel combustion strategy at higher loads and speeds and thus allowing full range use of the engine under realistic driving conditions. Experiments were performed to characterize engine out emissions during transient engine operating conditions involving LTC combustion strategies.
X