Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Journal Article

Age Effects on Injury Patterns in Pedestrian Crashes

2010-04-12
2010-01-1164
Approximately 600,000 fatalities occur each year as a result of pedestrians being impacted by motor vehicles (World Bank, 2008). Previous studies (Heller et al., 2009) have utilized databases such as the National Inpatient Sample (NIS) to gain a more thorough understanding of the common injury patterns that occur in real-world traffic collisions involving pedestrians in the United States. The NIS contains records on five to eight million hospital stays annually and provides a wealth of information regarding injuries to hospitalized pedestrian casualties in the U.S. Because of the large number of applicable records in the NIS and the randomized sampling procedure, the data can be used to complete analyses that are not possible with smaller databases such as the Pedestrian Crash Data Study (PCDS), which is not intended to be statistically representative of pedestrian crashes in general.
Journal Article

Occupant Kinematics and Injury Mechanisms During Rollover in a High Strength-to-Weight Ratio Vehicle

2010-04-12
2010-01-0516
Rollover events involving multiple revolutions are dynamic, high-energy, chaotic events that may result in occupant injury. As such, there is ongoing discussion regarding methods that may reduce injury potential during rollovers. It has been suggested that increasing a vehicle's roof strength will mitigate injury potential. However, numerous experimental studies and published field accident data analyses have failed to show a causal relationship between roof deformation and occupant injury. The current study examines occupant kinematics and injury mechanisms during dolly rollover testing of a vehicle with a high roof strength-to-weight ratio (SWR = 4.8). String potentiometers and high-speed video cameras were used to capture and quantify the dynamic roof motion throughout the rollover. Instrumented Anthropomorphic Test Devices (ATDs) in the front occupant positions allowed for the assessment of occupant kinematics, loading, and injury mechanics during the rollover event.
Technical Paper

Using National Databases to Evaluate Injury Patterns in Pedestrian Impacts

2009-04-20
2009-01-1209
Each year, over half of the world's 1.17 million fatalities resulting from traffic collisions are pedestrians (World Bank, 2008). Mitigation of such fatalities and serious injuries requires a thorough understanding of the common injury mechanisms that occur in pedestrian impacts. Studying the frequency of injury to each body region and how injury patterns are related may provide additional insight into pedestrian injury mechanisms, which could be used to develop additional prevention strategies. There is a wealth of information regarding pedestrian collisions within national databases that have not been extensively used to investigate these issues to date. This paper presents a review of selected databases that contain information regarding injuries to pedestrians who have been involved in a motor vehicle collision, including the strengths and weaknesses of each in performing this type of analysis.
Technical Paper

Occupant Injury in Motor Vehicle Collisions: Using Field Accident Data from Multiple Sources

2009-04-20
2009-01-0394
Review of field accident data is an important tool in understanding injuries in motor vehicle crashes (MVCs). Multiple databases are available that contain information about traffic-related traumatic injuries, many of which are not commonly used in traffic injury research. This work discusses some databases commonly used to evaluate field accident data and introduces additional databases (primarily hospital, medical, and trauma) that include traffic-related injuries. These data represent a new source of information about MVC traumas and often contain additional health information. The strengths and limitations of each database for evaluating vehicular injuries are compared and discussed.
Technical Paper

Injury Patterns among Special Populations Involved in Pedestrian Crashes

2010-04-12
2010-01-1165
Over half of the 1.2 million annual traffic fatalities worldwide are pedestrians struck by motor vehicles [ 1 ]. Medical databases, such as the National Inpatient Sample (NIS), have been utilized to ascertain injury patterns in the general population of injured pedestrians [ 2 - 3 ]. However, the authors are not aware of any studies investigating how factors, such as physical impairments, intoxication, and pre-existing medical implants (e.g. hip replacement, artificial knee, etc.) affect the prevalence of pedestrian accidents or injury outcomes. Five to eight million inpatient hospitalization records are included in the NIS annually, and this large sample size allows for analyses that are not possible with smaller data sets on pedestrian injuries. The current study utilizes the NIS to evaluate how several factors such as blindness, deafness, intoxication, and pre-existing medical implants affect injury patterns when compared to the general population of hospitalized pedestrians.
Technical Paper

The Effect of Side Impact Collision Delta-V, Restraint Status, and Occupant Position on Injury Outcome

2010-04-12
2010-01-1158
The risk of sustaining injury in side collisions is correlated to collision severity as well as other factors such as restraint usage and occupant position relative to the impact. The most recent National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) data available (1997 to 2007) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) either between 8:00 and 10:00 or between 2:00 and 4:00, indicating a side impact collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on resultant delta-V, restraint system use, and occupant position relative to the impact.
Technical Paper

The Effect of Rear Impact Collision Delta-V and Restraint Status on Injury Outcome

2014-04-01
2014-01-0524
The risk of sustaining injury in rear impact collisions is correlated to collision severity as well as other factors such as restraint usage. The most recent National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) data available (1997 to 2011) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) between 5:00 and 7:00, indicating a rear impact collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on resultant delta-V and restraint system use. Each body region (head, spine, thorax, abdomen, upper extremity, and lower extremity) was considered separately.
Technical Paper

The Effect of Frontal Collision Delta-V and Restraint Status on Injury Outcome

2010-04-12
2010-01-0145
The risk of sustaining injury in frontal collisions is correlated to collision severity as well as other factors such as restraint usage and airbag deployment. Eleven years (1997 to 2007) of National Automotive Sampling System (NASS) data from the Crashworthiness Data System (CDS) were analyzed to identify accidents involving passenger vehicles that have experienced an impact with a principal direction of force (PDOF) between 11:00 and 1:00, indicating a frontal collision. The Abbreviated Injury Scale (AIS) was used as an injury rating system for the involved vehicle occupants who were at least sixteen years old and were seated in the outboard seating positions of the front row. These data were further analyzed to determine injury risk based on factors such as delta-V, restraint system use, and airbag deployment. Each body region (head, face, spine, thorax, abdomen, upper extremity, and lower extremity) was considered separately.
Journal Article

An Evaluation of the BioRID II and Hybrid III During Low- and Moderate-Speed Rear Impact

2010-04-12
2010-01-1031
Debate surrounds the utility of the Biofidelic Rear Impact Dummy (BioRID) anthropomorphic test device (ATD) for providing meaningful biomechanical metrics during rear impact and the appropriate criteria for interpreting the ATD response. In the current study, we performed a comparison of the kinematic and kinetic responses of the BioRID II and Hybrid III ATDs over a range of low- and moderate-speed rear impact conditions. A BioRID II and a midsize male Hybrid III were tested side-by-side in a series of rear impact sled tests. To evaluate occupant response in rear impact, the ATDs were positioned into front row standard production bucket seats, restrained by 3-point safety belts, and subjected to rear impacts with delta-Vs (ΔVs) of 2.2, 3.6, 5.4, and 6.7 m/s (5, 8, 12, and 15 mph).
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
X