Refine Your Search

Search Results

Author:
Viewing 1 to 12 of 12
Technical Paper

“Pedestrian in the Loop”: An Approach Using Augmented Reality

2018-04-03
2018-01-1053
A large number of testing procedures have been developed to ensure vehicle safety in common and extreme driving situations. However, these conventional testing procedures are insufficient for testing autonomous vehicles. They have to handle unexpected scenarios with the same or less risk a human driver would take. Currently, safety related systems are not adequately tested, e.g. in collision avoidance scenarios with pedestrians. Examples are the change of pedestrian behaviour caused by interaction, environmental influences and personal aspects, which cannot be tested in real environments. It is proposed to use augmented reality techniques. This method can be seen as a new (Augmented) Pedestrian in the Loop testing procedure.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Technical Paper

Vibration Comfort Control for HEV Based on Machine Learning

2014-06-30
2014-01-2091
Hybrid electric vehicles (HEVs) with a power-split system offer a variety of possibilities in reduction of CO2 emissions and fuel consumption. Power-split systems use a planetary gear sets to create a strong mechanical coupling between the internal combustion engine, the generator and the electric motor. This concept offers rather low oscillations and therefore passive damping components are not needed. Nevertheless, during acceleration or because of external disturbances, oscillations which are mostly influenced by the ICE, can still occur which leads to a drivability and performance downgrade. This paper proposes a design of an active damping control system which uses the electric motor to suppress those oscillations instead of handling them within the ICE control unit. The control algorithm is implemented as part of an existing hybrid controller without any additional hardware introduced.
Technical Paper

Challenges for Reuse in a Safety-Critical Context: A State-of-Practice Study

2014-04-01
2014-01-0218
The need for cost efficient development and shorter time to market requires reuse of safety-critical embedded systems. One main challenge for reuse approaches in a safety-critical context is to provide evidence that assumptions of the safety artifacts for the reused component are still valid in the new system definition. This paper summarizes the major findings from an explorative study conducted in order to identify the state of practice of reuse in the context of different functional safety standards. The explorative study consists of a set of questions, which have been discussed with interviewees from companies of various domains. The companies act in safety-critical domains with diverse product portfolios. We covered several points of view by interviewing persons with different background. The results of the study reveal industrial challenges, which built the input for the derivation of possible future work based on the identified practical needs.
Technical Paper

Evaluation of Intersection Assistance Systems Based on Vehicular Communication Systems

2014-04-01
2014-01-0162
Within this work we demonstrate the implementation and evaluation of a vehicle-to-vehicle based intersection assistance system, relying only on communication between the vehicles and not requiring any communication with infrastructural components as it is the case with typical complex intersection assistance systems. It also requires no additional information like right-of-way or maps and works out-of-the-box for nearly all types of intersections. The intersection assistance system utilizes GPS, yaw rate, vehicle acceleration, speed and heading as indicators for a 3D path prediction. While the x-y layer aids in the detection of possible collisions, the z axis is used for detecting bridges and overpasses. By applying several sophisticated filter levels and algorithms, the amount of false positives can massively be reduced while the true positives can be maintained. Finally, the developed simple intersection assistance system is compared to a sophisticated intersection assistance system.
Technical Paper

A Co-Simulation Based Approach for the Validation of Integrated Safety Systems

2013-04-08
2013-01-0201
With the huge improvements made during the last years in the area of integrated safety systems, they are one of the main contributors to the massively rising complexity within automotive systems. However, this enormous complexity stimulates the demand for methodologies supporting the efficient development of such systems, both in terms of cost and development time. Within this work, we propose a co-simulation-based approach for the validation of integrated safety systems. Based on data measurements gained from a test bed, models for the sensors and the distributed safety system are established. They are integrated into a co-simulation environment containing models of the ambience, driving dynamics, and the crash-behavior of the vehicle. Hence, the complete heterogeneous system including all relevant effects and dependencies is modeled within the co-simulation.
Technical Paper

System Modeling for Integration and Test of Safety-Critical Automotive Embedded Systems

2013-04-08
2013-01-0189
Functional safety of automotive embedded systems is a key issue during the development process. To support the industry, the automotive functional safety standard ISO 26262 has been defined. However, there are several limitations when following the approach directly as defined in the standard. Within this work, we propose an approach for the integration and test of safety-critical systems by using system modeling techniques. The combination of two state-of-the-art modeling languages into a dedicated multi-language development process provides a direct link between all stages of the development process, thus enabling efficient safety verification and validation already during modeling phase. It supports the developer in efficient application of requirements as defined by ISO 26262, hence reducing development time and cost by providing traceable safety argumentation.
Technical Paper

Stability Analysis of a Two-Voltage Vehicle Electrical System Based on Co-Simulation

2012-04-16
2012-01-0012
In the automotive industry a strong trend towards electrification is determined. It offers the possibility of a more flexible actuation of the vehicle systems and can therefore reduce the fuel consumption and CO₂ emissions for modern vehicles. This is not only valid for typical drive train components, e.g., for hybrid or pure electric vehicles, but also for chassis components and auxiliaries like power-steering pump or air-conditioning compressor. However, a further electrification is limited by the 14V power net of conventional passenger cars. The high electric currents required by new/additional electrical components may lead to increased line losses and instability in the vehicle electrical system. With the introduction of a medium voltage level (≺60V) these problems can be circumvented.
Technical Paper

An Adaptive Coupling Methodology for Fast Time-Domain Distributed Heterogeneous Co-Simulation

2010-04-12
2010-01-0649
In the automotive industry well-established different simulation tools targeting different needs are used to mirror the physical behavior of domain specific components. To estimate the overall system behavior coupling of these components is necessary. As systems become more complex, simulation time increases rapidly by using traditional coupling approaches. Reducing simulation time by still maintaining accuracy is a challenging task. Thus, a coupling methodology for co-simulation using adaptive macro step size control is proposed. Convergence considerations of the used algorithms and scheduling of domain specific components are also addressed. Finally, the proposed adaptive coupling methodology is examined by means of a cross-domain co-simulation example describing a hybrid electric vehicle. Considerable advantages in terms of simulation time reduction are presented and the trade-off between simulation time and accuracy is depicted.
Journal Article

Combining the Advantages of Simulation and Prototyping for the Validation of Dependable Communication Architectures: the TEODACS Approach

2009-04-20
2009-01-0763
One main challenge during the validation of automotive communication architectures is to consider the assembled system and more especially the interactions between the different components. We propose in this work a test and validation infrastructure based on tightly coupled co-simulation and prototype platforms. The co-simulation framework, on one hand, enables the efficient simulation of the entire network and the accurate analysis of the communication at different abstraction layers. On the other hand, the prototype framework is required for the model calibration and for the system validation on a realistic environment. We discuss further how the interconnection of these two platforms supports the analysis of both single components and entire communication networks. Experimental results illustrate our approach.
Journal Article

Holistic Change Management in Automotive Electrical/Electronic Development using an Integrated Engineering Product and Process Model

2008-04-14
2008-01-1276
The systematic networking of engineering product and its underlying dynamic development process forms the solid basis of cross-domain change management and product/process optimization at any time during the development. In this article a model-based approach to efficiently integrate engineering product and process during passive safety system development within the vehicle electric/electronic (E/E) domain is proposed. The relevant parts of the system are modeled on their functional level while the corresponding development process is represented by taking into account the information flow between process steps as well as organization structures. By linking both domains, i.e. both models, given their interfaces and dependencies on different abstraction levels, the impacts of product/process changes on the process/product during all design stages are evaluated in either direction.
Technical Paper

Fault Tracking and Failure Effect Analysis in Complex Automotive Control Systems Based on a Generic Modeling Approach

2007-10-30
2007-01-4246
This paper introduces a unified framework to perform fault tracking based on a technology-independent and consistent generic functional model capable of representing the entire automotive system while maintaining the ease of use. Based on the example of a complete light function model of a luxury class vehicle, it is illustrated how certain failures such as device break down or signal faults propagate through different subsystems and how these failures can be tracked. Another key feature of the proposed dependency analysis method is its valuable contribution to an efficient change management in the design phase. Given the functional model of the system, a tool can be used to indicate which development departments and resources are affected of possible changes and which are not.
X