Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Testing of Real-Time Criteria in ISO 26262 Related Projects - Maximizing Productivity Using a Certified COTS Test Automation Tool

2016-04-05
2016-01-0139
Increasing productivity along the development and verification process of safety-related projects is an important aspect in today’s technological developments, which need to be ever more efficient. The increase of productivity can be achieved by improving the usability of software tools and decreasing the effort of qualifying the software tool for a safety-related project. For safety-critical systems, the output of software tools has to be verified in order to ensure the tools’ suitability for safety-relevant applications. Verification is particularly important for test automation tools that are used to run hardware-in-the-loop (HIL) tests of safety-related software automatically 24/7. This qualification of software tools requires advanced knowledge and effort. This problem can be solved if a tool is suitable for developing safety-related software. This paper explains how this can be achieved for a COTS test automation tool.
Technical Paper

Hybrid Vehicle Model Development using ASM-AMESim-Simscape Co-Simulation for Real-Time HIL Applications

2012-04-16
2012-01-0932
Hardware-in-the-loop (HIL) simulation is a real-time testing process that has been proven indispensable for the modern vehicle dynamics, powertrain, chassis and body systems electronic controls development. The high quality standards and robustness of the control algorithms can only be met by means of detailed vehicle plant simulation models. In the last few years, several efforts have been made to develop detailed plant models. Several tools for the vehicle modeling are available in the market and each tool has different and distinct advantages. This paper addresses ways that dSPACE Automotive Simulation Models (ASM) can support the model-based development processes. Additional modern software tools that were used in connection with the ASM are LMS AMESim and Mathworks SimDriveline (of Simscape). ASM is an open Matlab/Simulink model environment used for offline PC based simulation and online real-time platform HIL testing.
Technical Paper

Hybrid Drivetrain Simulation for Hardware-in-the-Loop Applications

2011-04-12
2011-01-0455
This paper describes challenges and possible solution of hybrid electrical vehicles test systems with a special focus on hardware-in-the-loop (HIL) test bench. The degree of novelty of this work can be seen in the fact that development and test of ECU for hybrid electrical powertrains can move more and more from mechanical test benches with real automotive components to HIL test systems. The challenging task in terms of electrical interface between an electric motor ECU and an HIL system and necessary real-time capable simulation models for electric machines have been investigated and partly solved. Even cell balancing strategies performed by battery management systems (BMU) can be developed and tested using HIL technology with battery simulation models and a precise cell voltage simulation on electrical level.
Technical Paper

Crank Angle - Based Diesel Engine Modeling for Hardware-in-the-Loop Applications with In-Cylinder Pressure Sensors

2007-04-16
2007-01-1303
Mean value engine models (MVEM) can be considered the standard models for hardware-in-the-loop (HIL) test systems for engine control units (ECUs). Mainly due to stricter environmental regulation, future ECUs for Diesel engines will also be equipped with in-cylinder pressure sensors. HIL test systems therefore have to provide the in-cylinder pressure in real time by means of a corresponding model. The paper describes extensions to an MVEM implemented in Simulink in order to calculate the in-cylinder pressure and temperature by means of appropriate heat release functions. Some emphasis is placed on the comparison of different heat release functions with respect to their applicability in real-time, closed-loop simulations. Some first steps in the calibration/parameterization of the chosen model based on real dynamometer measurements, along with a test on a real ECU, will complete this contribution.
X