Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Simultaneous Improvement of Fuel Consumption and Exhaust Emissions on a Multi-Cylinder Camless Engine

2011-04-12
2011-01-0937
Further improvement in fuel consumption is needed for diesel engines to address regulatory requirement particularly for heavy duty diesel in Japan enforced in 2015, in addition to the compliance to the regulatory requirements for exhaust emission, which seems to be more stringent in future. The authors have participated in the project of “Comprehensive Technological Development of Innovative, Next-Generation, Low-Pollution Vehicles” organized by New Energy and Industrial Technology Development Organization (NEDO), and innovative devices such as multi stage boosting system, ultra high-pressure fuel injection system and variable valve actuation (camless) system had been developed in this project from a standpoint of simultaneous improvement of fuel consumption and exhaust emission. In camless system, intake and exhaust valves are driven by hydraulic pressure. So, fully flexible setting of opening and closure timings and lift of the intake and exhaust valves is possible.
Technical Paper

Expansion of Premixed Compression Ignition Combustion Region by Supercharging Operation and Lower Compression Ratio Piston

2007-08-05
2007-01-3614
Various premixed diesel combustion concepts are suggested as the way of simultaneous reduction of NOx and PM emission from diesel engines. However, every combustion concept has common problems, such as difficulty of ignition timing control, a great deal of HC and CO emissions and limiting the operation region to low load operation. The purpose of this study is to expand the operation region of Premixed Compression Ignition (PCI) combustion, which is a premixed diesel combustion concept that realizes the fuel injection around the top dead center. As a result of examining it with EGR, supercharging operation and low compression ratio piston, PCI combustion region was expanded to cover higher load operation. And the high load region was limited by not only stoichiometric air fuel ratio but also permissible maximum in-cylinder pressure.
X