Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Individual Cylinder Air-Fuel Ratio Estimation Algorithm for Variable Valve Lift (VVL) Engines

2010-04-12
2010-01-0785
In a multi-cylinder variable valve lift (VVL) engine, in spite of its high efficiency and low emission performance, operation of the variable valve lift brings about not only variation of the air-fuel ratio at the exhaust manifold, but also individual cylinder air-fuel ratio maldistribution. In this study, in order to reduce the air-fuel ratio variation and maldistribution, we propose an individual cylinder air-fuel ratio estimation algorithm for individual cylinder air-fuel ratio control. For the purpose of the individual cylinder air-fuel ratio estimation, air charging dynamics are modeled according to valve lift conditions. In addition, based on the air charging model, individual cylinder air-fuel ratios are estimated by multi-rate sampling from single universal exhaust gas oxygen (UEGO) sensor located on the exhaust manifold. Estimation results are validated with a one-dimensional engine simulation tool.
Technical Paper

Real-time IMEP Estimation for Torque-based Engine Control using an In-cylinder Pressure Sensor

2009-04-20
2009-01-0244
A control method using an in-cylinder pressure sensor can directly and precisely control engine combustion, lowering harmful emissions and fuel consumption levels. However, this method cannot be applied to a conventional engine management system because of its inaccuracy and the high cost of the pressure sensor, as well as the high computational load. In this study, we propose a real-time IMEP estimation method for a common rail direct injection diesel engine using the difference pressure integral as a cylinder pressure variable. The proposed method requires less computational load, enabling the IMEP to be estimated in real-time. In addition, we validated the estimation algorithm through simulation and engine experiments. The IMEP was accurately estimated with a small root mean square error of below 0.2305 bar.
Technical Paper

Development of an Injector Driver for Piezo Actuated Common Rail Injectors

2007-08-05
2007-01-3537
In CRDI diesel engines, the piezo injector is gradually replacing the solenoid injector due to the quick response of the actuator. Operating performance of the injectors in the CRDI diesel engine has an influence on engine emissions. Therefore, accurate injector control is one of the most important parts of the CRDI engine control. The objective of this paper is the development of a piezo injector driver for CRDI diesel engines. Electrical characteristics of the piezo injector were analyzed. A control strategy for charging and discharging the actuator are proposed. The developed injector driver is verified by experiments under various fuel pressures, injection durations and driving circuit voltages.
X