Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Air Entrainment in Gaseous Fuel Jets Using Particle Image Velocimetry and High Speed Schlieren Photography in a Constant Volume Chamber

2015-04-14
2015-01-0938
The air entrainment process of a compressed natural gas transient fuel jet was investigated in a constant-volume chamber using Schlieren and particle image velocimetry (PIV) techniques. A new method of calculating air entrainment around a gaseous fuel jet is proposed using Schlieren and PIV imaging techniques. This method offers an alternative to calculation of an alternative to calculation of entrainment using LIF technique in gaseous fuel jets. Several Jet-ambient pressure ratios were tested. In each test, nitrogen was used to fill the chamber as an air surrogate before the jet of natural gas was injected. Schlieren high speed videography and PIV experiments were performed at the same conditions. Schlieren mask images were used to accurately identify the jet boundary which was then superimposed onto a PIV image. Vectors adjacent to the Schlieren mask in the PIV image were used to calculate the spatial distribution of the air entrainment at the jet boundary.
Technical Paper

Application of Particle Swarm Optimization for Diesel Engine Performance Optimization

2010-04-12
2010-01-1258
A particle swarm optimization (PSO) algorithm was implemented with engine testing in order to accelerate the engine development process. The PSO algorithm is a stochastic, population-based evolutionary optimization algorithm. In this study, PSO was used to reduce exhaust emissions while maintaining high fuel efficiency. A merit function was defined to help reduce multiple emissions simultaneously. Engine operations using both single-injection and double-injection strategies were optimized. The present PSO algorithm was found to be very effective in finding the favorable operating conditions for low emissions. The optimization usually took 40-70 experimental runs to find the most favorable operating conditions under the constraints specified in the present testing. High EGR levels, small pilot amount, and late main injection were suggested by the PSO. Multiple emissions were reduced simultaneously without a compromise in the brake specific fuel consumption.
Technical Paper

Effects of Biodiesel Blends on Emissions in Low Temperature Diesel Combustion

2009-04-20
2009-01-0485
The simultaneous reduction of particulate matter (PM) and nitrous oxides (NOx) emissions form diesel exhaust is key to current research activities. Although various technologies have been introduced to reduce emissions from diesel engines, the in-cylinder reduction of PM and NOx due to improved combustion mechanisms will continue to be an important field in research and development of modern diesel engines. Furthermore increasing prices and question over the availability of diesel fuel derived from crude oil has introduced a growing interest. Hence it is most likely that future diesel engines will be operated on pure biodiesel and/or blends of biodiesel and crude oil-based diesel. In this study the performance of different biodiesel blends under low temperature combustion conditions (i.e., high exhaust gas recirculation and advanced fuel injection schemes) was investigated.
Journal Article

Diesel Emission Characteristics Using High Injection Pressure with Converging Nozzles in a Medium-Duty Engine

2008-04-14
2008-01-1085
Effects of high injection pressure and converging nozzles on combustion and emissions of a multi-cylinder diesel engine were investigated. The engine uses a common-rail injection system that allows a maximum injection pressure of 200 MPa. Various injection pressures were tested to explore the benefits of high injection pressure in achieving low exhaust emissions in diesel engines. Injectors used in this study include conventional straight-hole nozzles and converging nozzles with a K factor of 3. Parametric studies were performed including variations in injection timings, number of injection pulses and EGR levels. It was found that low temperature combustion can be achieved by using high EGR with 1) late single injection or 2) double injection with an early pilot and a late main injection. Investigations revealed that high injection pressures significantly reduced soot emissions with an increase in NOx emissions under conventional injection timing ranges.
X