Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of Engine Variables for Low Emissions of a 6 Cylinder Heavy Duty Diesel Engine

2016-02-01
2016-28-0121
There are significant geometrical as well as operational parameters which affect the emission performance of a diesel engine. In this work, various important engine variables are selected for optimization. The objective of this work is to satisfy BS III norms, that too, with a healthy margin. Among the selected variables, swirl is a complex variable to control, and that itself depends on number of geometrical and operational parameters. Chamfer angle of the valve seat is modified to vary swirl ratios, actual swirl performance test is done. Further, CFD and analytical analysis is done on various geometrical parameters of intake port and important parameters affecting swirl were identified. Thus, by the above exercise three optimum swirl ratios were selected for design of experiments. Engine variables selected for optimization are swirl ratio, fuel injection timing, nozzle orifice (K and KS type) and turbocharger (waste gate and free float).
Technical Paper

Strategy for EOBD Compliant Plausibility Check of Air Mass Flow Sensor in Absence of Boost Pressure Sensor

2008-04-14
2008-01-1296
In the move towards cleaner diesel emissions, the European On Board Diagnostics (EOBD) legislation mandates monitoring of drift of air mass flow sensor. Drift of a sensor is defined as the phenomenon in which output signal slowly deviates independent of the measured property. Long term drift usually indicates a slow degradation of sensor properties over a long period of time. Drift monitoring of the air mass flow sensor involves comparing the signal from the sensor with a reference signal under special operating conditions. Boost pressure sensor, which measures absolute intake manifold pressure and intake air temperature, is used to calculate the reference signal. For engines with constant geometry turbo charger, boost pressure sensor is solely used for drift monitoring. Therefore, it was a challenge to come up with a means of finding the drift in air flow mass sensor without boost pressure sensor.
Technical Paper

Experiences with Metallic Turbulent Substrates on 2.6/ Diesel Vehicle for Meeting Present and Future Emission Norms

2007-01-17
2007-26-018
Over the past several years, monolithic catalytic converters with laminar flow profile are being used by automotive industry. These catalytic converters, though create some turbulence at the inlet, make the majority of the rest of the flow laminar, thereby reducing the mass transfer of the exhaust components to the effective catalytic sites. Improvements were achieved only through the higher cell densities so far. If the design change in the substrates allows the change of exhaust flow from laminar to turbulent, longer residence time can be achieved and more unconverted gases from the core of the channel come closer to the catalyst surfaces facilitating more reaction with the active catalytic sites. The turbulent technology has been successfully developed more recently with metal substrates to get the required turbulent flow characteristics in the substrate channels.
X