Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Refinement of a 0D Turbulence Model to Predict Tumble and Turbulent Intensity in SI Engines. Part II: Model Concept, Validation and Discussion

2018-04-03
2018-01-0856
As known, reliable information about underlying turbulence intensity is a mandatory pre-requisite to predict the burning rate in quasi-dimensional combustion models. Based on 3D results reported in the companion part I paper, a quasi-dimensional turbulence model, embedded under the form of “user routine” in the GT-Power™ software, is here presented in detail. A deep discussion on the model concept is reported, compared to the alternative approaches available in the current literature. The model has the potential to estimate the impact of some geometrical parameters, such as the intake runner orientation, the compression ratio, or the bore-to-stroke ratio, thus opening the possibility to relate the burning rate to the engine architecture. Preliminarily, a well-assessed approach, embedded in GT-Power commercial software v.2016, is utilized to reproduce turbulence characteristics of a VVA engine.
Technical Paper

3D CFD Analyses of Intake Duct Geometry Impact on Tumble Motion and Turbulence Production in SI Engines

2017-10-08
2017-01-2199
In recent years, engine manufacturers have been continuously involved in the research of proper technical solutions to meet more and more stringent CO2 emission targets, defined by international regulations. Many strategies have been already developed, or are currently under study, to attain the above objective. A tendency is however emerging towards more innovative combustion concepts, able to efficiently burn lean or highly diluted mixtures. To this aim, the enhancement of turbulence intensity inside the combustion chamber has a significant importance, contributing to improve the burning rate, to increase the thermal efficiency, and to reduce the cyclic variability. It is well-known that turbulence production is mainly achieved during the intake stroke. Moreover, it is strictly affected by the intake port geometry and orientation.
X