Refine Your Search

Topic

Search Results

Technical Paper

Optical Characterization of Methane Combustion in a Four Stroke Engine for Two Wheel Application

2012-04-16
2012-01-1150
In the urban area the internal combustion engines are the main source of CO₂, NO and particulate matter (PM) emissions. The reduction of these emissions is no more an option, but a necessity highlighted by the even stricter emission standards. In the last years, even more attention was paid to the alternative fuels. They allow both reducing the fuel consumption and the pollutant emissions. With regards to the gaseous fuels, methane is considered one of the most interesting in terms of engine application. It represents an immediate advantage over other hydrocarbon fuels because of the lower C/H ratio. In this paper the effect of the methane on the combustion process, the pollutant emissions and the engine performance was analyzed. The measurements were carried out in an optically accessible single-cylinder, Port Fuel Injection, four-stroke SI engine equipped with the cylinder head of a commercial 250 cc motorcycles engine and fuelled both with gasoline and methane.
Technical Paper

Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine

2011-04-12
2011-01-1193
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized Rapeseed Methyl Ester (RME) at different levels of blending on performance, emissions and fuel consumption of modern automotive diesel engines featuring Closed-Loop Combustion Control (CLCC). In parallel, the capability of this system to detect the level of biodiesel blending through the use of specific detection algorithms was assessed. The tests were performed on the recently released 2.0L Euro5 GM diesel engine for passenger car application equipped with embedded pressure sensors in the glow plugs. Various blends of fresh and aged RME with reference diesel fuel were tested, notably 20% RME by volume (B20), 50% (B50) and pure RME (B100).
Technical Paper

Particle Size Distributions from a DI High Performance SI Engine Fuelled with Gasoline-Ethanol Blended Fuels

2011-09-11
2011-24-0211
This paper reports the results of an experimental investigation on the combustion characteristics and exhaust particulate emissions of a GDI high performance engine, fuelled with blends of bio-ethanol and European gasoline fuel. The engine is a 4-cylinder, 4-stroke, 1750 cm₃ displacement, and turbocharged. The engine was operated at fixed speed and load, namely 1500 rpm and 110 Nm, and fuelled with gasoline (E0), ethanol (E100) and two blends 50% v/v (E50) and 85% v/v (E85) of ethanol in gasoline. Two fuel injection strategies were investigated: homogeneous charge and stratified charge combustion mode. The study mainly focuses on the effects of fuel injection strategy and ethanol upon the emissions of particulate matter (PM), in terms of mass, number concentration and size distribution.
Technical Paper

Experimental Characterization of Nanoparticles Emissions in a Port Fuel Injection Spark Ignition Engine

2011-09-11
2011-24-0208
In the recent years, growing attention has been focused on internal combustion engines, considered as the main sources of Particulate Matter (PM) in urban air. Small particles are associated to fine dust formation in the atmosphere and to pulmonary diseases. The legislation proposes a stronger restriction in terms of particulate mass concentrations for both Diesel and gasoline engines and a limitation on number concentration. Unfortunately, the experimental evaluation of particles number and size is a hard task as they are strongly affected by the dilution conditions, due to condensation and nucleation phenomena, which may occur during the sampling. Even if a considerable amount of basic research on particulate matter emitted by engines has been carried out, the mechanisms governing particle formation are still not fully understood, neither for Diesel nor for gasoline engines.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0839
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Technical Paper

Experimental Investigation of a Methane-Gasoline Dual-Fuel Combustion in a Small Displacement Optical Engine

2013-09-08
2013-24-0046
In this paper the methane-gasoline dual fuel combustion was investigated. Gasoline was injected in the intake manifold (PFI fuel), while methane was injected in the combustion chamber (DI fuel), in order to reproduce a stratified combustion. The combustion process and the related engine performance and pollutant emissions were analyzed. The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc engine representative of the most popular two-wheel vehicles in Europe. Optical measurements were performed to analyze the combustion process with high spatial and temporal resolution. In particular, optical techniques based on 2D-digital imaging were used to follow the flame front propagation and the soot and temperature concentration in the combustion chamber.
Technical Paper

Characterization of Ethanol Blends Combustion Processes and Soot Formation in a GDI Optical Engine

2013-04-08
2013-01-1316
This paper deals with the evaluation of the effect of fuel properties on soot formation in a GDI (gasoline direct injection) engine. Experimental investigation was carried out in an optical 4-stroke small single cylinder engine for two-wheel vehicles. The engine displacement was 250 cc. It was equipped with an elongated piston with a wide sapphire window in the head and a quartz cylinder liner. The engine was fuelled with pure gasoline and ethanol, and ethanol/gasoline blends at 20% v/v, 50% v/v and 85% v/v. Optical techniques based on 2D-digital imaging were used to follow the combustion process and soot formation. Spectroscopic measurements were carried out in order to assess the soot evolution. Radical species such as OH and CH, related to fuel quality and to soot formation/oxidation process, were detected. Measurements were carried out at various engine speeds and loads in order to allow optical measurements and to test the engine in real conditions.
Technical Paper

The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition

2022-09-16
2022-24-0037
Direct injection spark ignition engines represent an effective technology to achieve the goal of carbon dioxide emission reduction. Further reduction of the carbon footprint can be achieved by using carbon-neutral fuels. Oxygenated alcohols are well consolidated fuels for spark ignition engines providing also the advantages of knock resistance and low soot tendency production. Methanol and ethanol are possible candidates as alternative fuels to gasoline due to their similar properties. In this study a blend at 25 % v/v of ethanol in gasoline (E25) and a blend with 80% gasoline, 5 % v/v ethanol and 15% v/v of methanol (GEM) were tested. These blends were considered since E25 is already available at fuel pump in some countries. The GEM blend, instead, could represent a valid alternative in the next future. Experiments were carried out on a high performance, turbocharged 1.8 L direct injection spark ignition engine over the Worldwide Harmonized Light Vehicles Test Cycle.
Technical Paper

Nanoparticles at Internal Combustion Engines Exhaust: Effect on Urban Area

2006-09-14
2006-01-3006
The role of Spark Ignition (SI) and Diesel engines as nanoparticles sources in urban area was investigated. Detection, sizing and counting of particles were realized at the exhaust of a Port Fuel Injection Spark Ignition (PFI SI) engine equipped with a Three-Way Catalyst (TWC) and a Unijet Common Rail (CR) Diesel engine equipped first with an Oxidation Catalyst (OC) and then with a Catalyzed Diesel Particulate Filter (CDPF). Engine operating conditions in high road traffic were considered. Electrical Low Pressure Impactor (ELPI) was used as real-time measurements device for particle size distribution in the range from 7 nm up to 10000 nm. Broadband UV-Visible Extinction and Scattering Spectroscopy (BUVESS) allowed investigating the chemical and physical nature of emitted particles. It was observed that the major contribution to particulate mass is due to Diesel engine equipped with the OC, the other engines contribute only in terms of number concentration.
Journal Article

Real Time Prediction of Particle Sizing at the Exhaust of a Diesel Engine by Using a Neural Network Model

2017-09-04
2017-24-0051
In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Technical Paper

Quasi-Dimensional Simulation of Downsizing and Inverter Application for Efficient Part Load Operation of Spark Ignition Engine Driven Micro-Cogeneration Systems

2018-10-30
2018-32-0061
Within the context of distributed power generation, small size systems driven by spark ignition engines represent a valid and user-friendly choice, that ensures good fuel flexibility. One issue is that such applications are run at part load for extensive periods, thus lowering fuel economy. Employing an inverter (fitted between the generator and load) allows engine operation within a wide range of crankshaft rotational velocity, therefore improving efficiency. For the purpose of evaluating the benefits of this technology within a co-generation framework, two configurations were modeled by using the GT-Power simulation software. After model calibration based on measurements on a small size engine for two-wheel applications, the downsized version was compared to a larger power unit operated at constant engine speed for a scenario that featured up to 10 kW rated power.
Technical Paper

Influence of Combustion Efficiency on the Operation of Spark Ignition Engines Fueled with Methane and Hydrogen Investigated in a Quasi-Dimensional Simulation Framework

2018-05-30
2018-37-0012
Within the context of widening application of numerical simulations for shortening engine development times, the present work covers the issue of quasi-dimensional simulation of spark ignition engines. Multi-fuel operation was the main goal of the study, with the analysis of methane and its blends with hydrogen; gasoline was also considered as a reference case. Data recorded on two engines with practically the same geometry, was used for calibrating the model. The first power unit was of commercial derivation for small applications, while the second one featured optical accessibility through the piston crown. The relative difference between the two engines allowed the top-land region crevice to be identified as the major contributor to overall combustion evolution, especially during its late stages.
Technical Paper

Effects of Ethanol and Gasoline Blending and Dual Fueling on Engine Performance and Emissions.

2015-09-06
2015-24-2490
Ethanol is the most promising alternative fuel for spark ignition (SI) engines, that is blended with gasoline, typically. Moreover, in the last years great attention is paid to the dual fueling, ethanol and gasoline are injected simultaneously. This paper aims to analyze the better methods, blending or dual fueling in order to best exploit the potential of ethanol in improving engine performance and reducing pollutant emissions. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000, 4000, and 5000 rpm full load. The investigated engine operating conditions are representative of the European homologation urban driving cycle.
Technical Paper

Investigation of Ethanol-Gasoline Dual Fuel Combustion on the Performance and Exhaust Emissions of a Small SI Engine

2014-10-13
2014-01-2620
The growing concerns over the pollutant emissions as well as the depletion of fossil fuel led to the research of advanced combustion mode and alternative fuels for the reduction both of fuel consumption and exhaust emissions. The dual-fuel injection system can be used to improve the engine performance and reduce the fossil fuel consumption performing simultaneously a direct-injection (DI) and a port-fuel-injection (PFI) of different fuels. Ethanol is one of the most promising alternative fuels for SI engines. It offers high anti-knock quality because of the high octane number; moreover, being an oxygenated fuel is very effective in particle emissions reduction. On the other hand, it is characterized by lower energy density mainly because of the low lower heating value (LHV). The aim of the paper is the investigation of the ethanol-gasoline dual fuel combustion on engine performance and emissions.
Technical Paper

Ethanol Addition Influence on Backfire Phenomena during Kickback in a Spark-Ignition Transparent Small Engine

2014-11-11
2014-32-0093
This paper investigates abnormal combustion during the cranking phase of spark-ignition small engines, specifically the occurrence of backfire at the release of the starter motor during kickback. The research focusses on the influence of fuel composition, mainly in terms of ethanol percentage, on backfire occurrence. Interest in this abnormal combustion is growing due to the increased use of fuels with different chemical-physical properties with respect to gasoline. Moreover, this issue will become even more topical due to the implementation of simple control and fuel supply systems on low cost-engines, which are widely used in developing countries. Experimentation was carried out in an optically accessible engine derived from a 4-stroke spark ignition engine for two-wheel vehicles. The test bench was instrumented and adapted in order to simulate the engine conditions that lead to anomalous ignition in the intake duct (backfire) during the reverse rotation of the engine (kickback).
Technical Paper

Effect of Octane Number Obtained with Different Oxygenated Components on the Engine Performance and Emissions of a Small GDI Engine

2014-11-11
2014-32-0038
Great efforts have been paid to improve engine efficiency as well as to reduce the pollutant emissions. The direct injection allows to improve the engine efficiency; on the other hand, the GDI combustion produces larger particle emissions. The properties of fuels play an important role both on engine performance and pollutant emissions. In particular, great attention was paid to the octane number. Oxygenated compounds allow increasing gasoline's octane number and play an important role in PM emission reduction. In this study was analyzed the effect of fuels with different RON and with ethanol and ethers content. The analysis was performed on a small GDI engine. Two operating conditions, representative of the typical EUDC cycle, were investigated. Both the engine performance and the exhaust emissions were evaluated. The gaseous emissions and particle concentration were measured at the exhaust by means of conventional instruments.
Technical Paper

Engine Performance and Emissions of a Small Diesel Engine Fueled with Various Diesel/RME Blends

2014-11-11
2014-32-0135
The present paper describes the results of an experimental activity performed on a small diesel engine for quadricycles, a category of vehicles that is spreading in Europe and is recently spreading over Indian countries. The engine is a prototype three-cylinder with 1000 cc of displacement and it is equipped with a direct common-rail injection system that reaches a maximum pressure of 1400 bar. The engine was designed to comply with Euro 4 emission standard that is a future regulation for quadricycles. It is worth underlining that the engine can meet emission limits just with EGR system and a DOC, without DPF. Various diesel/RME blends were tested; pure diesel and biodiesel fuels were also used. The investigation was carried out at the engine speeds of 1400, 2000 and 3400 rpm and full load. Combustion characteristics of both blended and pure RME were analyzed by means of in-cylinder pressure and heat released histories.
Technical Paper

Experimental Characterization of an Ethanol DI - Gasoline PFI and Gasoline DI - Gasoline PFI Dual Fuel Small Displacement SI Engine

2015-04-14
2015-01-0848
The aim of the paper is the comparison of the performance, gaseous and particle emissions from different injection configurations and fuels. The engine was operated in port fuel injection (PFI), direct injection (DI) and dual fuel (DF). For DF, ethanol DI-gasoline PFI and gasoline DI-gasoline PFI strategies were performed to discern the effect of injection strategy from the effect of the fuel. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000 rpm, 4000 rpm and 5000 rpm full load. The investigated engine operating conditions are representative of the homologation urban driving cycle. The gaseous and particle emissions were measured at the exhaust by means of a gas analyzer and a smoke meter.
Technical Paper

An experimental investigation on combustion and engine performance and emissions of a methane-gasoline dual-fuel optical engine

2014-04-01
2014-01-1329
The use of methane as supplement to liquid fuel is one of the solution proposed for the reduction of the internal combustion engine pollutant emissions. Its intrinsic properties as the high knocking resistance and the low carbon content makes methane the most promising clean fuel. The dual fuel combustion mode allows improving the methane combustion acting mainly on the methane slow burning velocity and allowing lean burn combustion mode. An experimental investigation was carried out to study the methane-gasoline dual fuel combustion. Methane was injected in combustion chamber (DI fuel) while gasoline was injected in the intake manifold (PFI fuel). The measurements were carried out in an optically accessible small single-cylinder four-stroke engine. It was equipped with the cylinder head of a commercial 250 cc motorcycles engine representative of the most popular two-wheel vehicles in Europe.
X