Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Journal Article

Optimal Preventive Maintenance Schedule Based on Lifecycle Cost and Time-Dependent Reliability

2012-04-16
2012-01-0070
Reliability is an important engineering requirement for consistently delivering acceptable product performance through time. It also affects the scheduling for preventive maintenance. Reliability usually degrades with time increasing therefore, the lifecycle cost due to more frequent failures which result in increased warranty costs, costly repairs and loss of market share. In a lifecycle cost based design, we must account for product quality and preventive maintenance using time-dependent reliability. Quality is a measure of our confidence that the product conforms to specifications as it leaves the factory. For a repairable system, preventive maintenance is scheduled to avoid failures, unnecessary production loss and safety violations. This article proposes a methodology to obtain the optimal scheduling for preventive maintenance using time-dependent reliability principles.
Journal Article

A Variable-Size Local Domain Approach to Computer Model Validation in Design Optimization

2011-04-12
2011-01-0243
A common approach to the validation of simulation models focuses on validation throughout the entire design space. A more recent methodology validates designs as they are generated during a simulation-based optimization process. The latter method relies on validating the simulation model in a sequence of local domains. To improve its computational efficiency, this paper proposes an iterative process, where the size and shape of local domains at the current step are determined from a parametric bootstrap methodology involving maximum likelihood estimators of unknown model parameters from the previous step. Validation is carried out in the local domain at each step. The iterative process continues until the local domain does not change from iteration to iteration during the optimization process ensuring that a converged design optimum has been obtained.
Journal Article

A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

2011-04-12
2011-01-0725
Understanding reliability is critical in design, maintenance and durability analysis of engineering systems. A reliability simulation methodology is presented in this paper for vehicle fleets using limited data. The method can be used to estimate the reliability of non-repairable as well as repairable systems. It can optimally allocate, based on a target system reliability, individual component reliabilities using a multi-objective optimization algorithm. The algorithm establishes a Pareto front that can be used for optimal tradeoff between reliability and the associated cost. The method uses Monte Carlo simulation to estimate the system failure rate and reliability as a function of time. The probability density functions (PDF) of the time between failures for all components of the system are estimated using either limited data or a user-supplied MTBF (mean time between failures) and its coefficient of variation.
Journal Article

Prediction of Automotive Side Swing Door Closing Effort

2009-04-20
2009-01-0084
The door closing effort is a quality issue concerning both automobile designers and customers. This paper describes an Excel based mathematical model for predicting the side door closing effort in terms of the required minimum energy or velocity, to close the door from a small open position when the check-link ceases to function. A simplified but comprehensive model is developed which includes the cabin pressure (air bind), seal compression, door weight, latch effort, and hinge friction effects. The flexibility of the door and car body is ignored. Because the model simplification introduces errors, we calibrate it using measured data. Calibration is also necessary because some input parameters are difficult to obtain directly. In this work, we provide the option to calibrate the hinge model, the latch model, the seal compression model, and the air bind model. The door weight effect is geometrically exact, and does not need calibration.
Journal Article

Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer

2008-04-14
2008-01-1217
The cathode gas diffusion layer (GDL) is an important component of polymer electrolyte membrane (PEM) fuel cell. Its design parameters, including thickness, porosity and permeability, significantly affect the reactant transport and water management, thus impacting the fuel cell performance. This paper presents an optimization study of the GDL design parameters with the objective of maximizing the current density under a given voltage. A two-dimensional single-phase PEM fuel cell model is used. A multivariable optimization problem is formed to maximize the current density at the cathode under a given electrode voltage with respect to the GDL parameters. In order to reduce the computational effort and find the global optimum among the potential multiple optima, a global metamodel of the actual CFD-based fuel cell simulation, is adaptively generated using radial basis function approximations.
Technical Paper

Balance between Reliability and Robustness in Engine Cooling System Optimal Design

2007-04-16
2007-01-0594
This paper explores the trade-off between reliability-based design and robustness for an automotive under-hood thermal system using the iSIGHT-FD environment. The interaction between the engine cooling system and the heating, ventilating, and air-conditioning (HVAC) system is described. The engine cooling system performance is modeled using Flowmaster and a metamodel is developed in iSIGHT. The actual HVAC system performance is characterized using test bench data. A design of experiment procedure determines the dominant factors and the statistics of the HVAC performance is obtained using Monte Carlo simulation (MCS). The MCS results are used to build an overall system response metamodel in order to reduce the computational effort. A multi-objective optimization in iSIGHT maximizes the system mean performance and simultaneously minimizes its standard deviation subject to probabilistic constraints.
Technical Paper

A Time-Dependent Reliability Analysis Method using a Niching Genetic Algorithm

2007-04-16
2007-01-0548
A reliability analysis method is presented for time-dependent systems under uncertainty. A level-crossing problem is considered where the system fails if its maximum response exceeds a specified threshold. The proposed method uses a double-loop optimization algorithm. The inner loop calculates the maximum response in time for a given set of random variables, and transforms a time-dependent problem into a time-independent one. A time integration method is used to calculate the response at discrete times. For each sample function of the response random process, the maximum response is found using a global-local search method consisting of a genetic algorithm (GA), and a gradient-based optimizer. This dynamic response usually exhibits multiple peaks and crosses the allowable response level to form a set of complex limit states, which lead to multiple most probable points (MPPs).
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
X