Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Practical Approach towards Muffler Design, Development and Prototype Validation

2010-09-28
2010-32-0021
Exhaust noise from engines is one of component noise pollution to the environment. Exhaust systems are developed to attenuate noise meeting required db (a) levels and sound quality, emissions based on environment norms. Hence this has become an important area of research and development. Most of the advances in theory of acoustic filters and exhaust mufflers have been developed in last two decades. Mufflers are important part of engine system and commonly used in exhaust system to minimize sound transmissions caused by exhaust gases. Design of mufflers is a complex function that affects noise characteristics, emission and fuel efficiency of engine. Therefore muffler design becomes more and more important for noise reduction. Traditionally, muffler design has been an iterative process by trial and error. However, the theories and science that has undergone development in recent years has given a way for an engineer to cut short number of iteration.
Technical Paper

A Study of Sound Source Characteristics for Vehicle Airborne Transfer Function Measurement

2013-09-24
2013-01-2343
Transfer function measurements are the basis for construction of conventional test based source-path-receiver model of a vehicle. Interior noise of a vehicle can be synthesized using source excitation (both acceleration at source and near source sound pressure level) and its corresponding transfer function (Vibro-Acoustic Transfer Function (VATF) and Acoustic Transfer Function (ATF) respectively) to the interior of vehicle. Ideally ATF should be linear and independent of sound source, dependent only on size of air cavities, body structure and its material characteristics in between receiver and source location. But practically because of the type of excitation signal used to excite the sound source and characteristics of sound source itself, there is a possibility of variations in amplitude of acoustic transfer function.
Technical Paper

Air Intake System NVH Performance Development for Commercial Vehicle

2014-04-01
2014-01-0019
Commercial vehicle NVH attributes primarily focus on interior noise for driver's comfort and exterior noise for environmental legislation. Major sources for both the interior and exterior noise are power train unit, exhaust and air intake system. This paper focuses on development of Air Intake System (AIS) for better interior and exterior NVH performance for medium and heavy commercial vehicles. For air intake system, structural radiations from its panels and nozzle noise are significant contributors on overall vehicle NVH. Noise generation mechanism in air intake system occurs due to opening and closing of the valves and inlet air column oscillation by sharp pressure pulse from cylinder. Based on benchmarking, vehicle level targets have been arrived, and then cascaded to system and sub-system level targets. For air intake system, targets for nozzle noise at wide open throttle condition have been set for exterior NVH performance.
Technical Paper

Bogie Suspension Noise Reduction on a Commercial Vehicle

2013-09-24
2013-01-2382
The Bogie suspensions ensure better stability at higher loads and also give the utmost reliability under extreme climatic conditions with minimum maintenance. Many vehicle manufactures have adopted for the bogie suspension at rear based on its advantages. The noises generated from the vehicle in the field includes engine noises and flow noises and hence it is very difficult to clearly discern the noise generated from suspension system of the vehicle [1]. Most suspension system noises do not come from a single part but they are caused by the coupling action between related parts, making it difficult to clearly identify the exact cases. This paper details the overall approach to identify the bogie suspension noise on a commercial vehicle and countermeasures to reduce the same.
Technical Paper

Commercial Vehicle NVH Refinement through Test-CAE Development Approach

2013-04-08
2013-01-1006
The cost incurred to make design modifications to solve NVH problems increases with maturity of design in the development process. Hence NVH issues should be addressed in the initial phase to avoid any significant changes in structure and subsequent changes in overall performance of the vehicle. Hybrid methodology with application of advanced testing and Computer Aided Engineering (CAE) tools to achieve full vehicle NVH attribute targets is nowadays a must for this reason. This paper represents a case study on low frequency NVH performance evaluation and refinement for heavy commercial vehicle truck using Hybrid Test-CAE methodology. To achieve better NVH performance, it is important to set competitive overall vehicle level NVH targets and cascade it down to system and sub-system targets. Test-CAE correlation has been carried out to validate Finite element (FE) modeling procedure and methodology.
Technical Paper

Methodology of Steering Assembly Development for NVH for Medium and Heavy Commercial Vehicle

2013-09-24
2013-01-2351
Driver fatigue is one among the important factors for accidents, causing loss of precious life and property. Apart from long driving hours, driver fatigue can be due to poor ride quality, cabin noise, high vibration levels and poor ergonomics. In last few years, there has been enough emphasis to improve the noise and vibration comfort of commercial vehicles, which is governed by vibration levels at tactile points such as steering wheel, gear lever, pedal and seat. Steering wheel vibration is an important element which driver uses to express about the vehicle vibration quality. Design of steering system is driven by ergonomics, packaging, durability, safety, vibration & ride and handling requirements. This paper discusses about methodology of steering assembly development for Noise Vibration and Harshness (NVH) performance of commercial vehicle.
Technical Paper

Pass by Noise Reduction on a Commercial Vehicle

2013-04-08
2013-01-1432
Pass-By-Noise (PBN) requirements area an important aspect of NVH development of a commercial vehicle. The PBN on an Intermediate commercial vehicle (ICV) with refrigerator container was the subject of this study. This vehicle emitted PBN greater than accepted threshold due to its configuration. The overall approach to identify the sources and contributors for PBN was to test the vehicle in its baseline condition as well as with improvements. Near source noise measurements were performed at all potential noise contributors. A windowing technique was used to identify the potential noise sources. This Windowing technique is the exposing of each individual noise source while keeping all others shielded. This technique is reliable and quickly reveals significant noise contributors. Improvements to noise sources were reviewed for effectiveness to the overall PBN and overall recommendations were made.
X