Refine Your Search

Topic

Search Results

Author:
Technical Paper

Development of Asbestos Free Aramid Fibre based Friction lining Material for Automotive Application

2023-11-10
2023-28-0122
The usage of asbestos-free material has grown in the automotive, aviation, and marine sectors due to its carcinogenic nature. The present investigation is to evaluate the non-asbestos organic friction material for automotive applications using aramid fibers. The aramid fibers or pulp is one of the essential ingredients of friction material as it possesses good qualities of friction material like high wear resistance and reliability. The present work is to optimize the pulp required for the best performance of friction lining material for brake pads in the automotive industry. The pulp percentage is varied by 0, 5, 7.5, and 10 weight percentages in hybrid composite friction materials. The various mechanical, wear and microstructural analysis are studied. The experimental result revealed that friction material having 10 wt% of aramid fiber (AF) proved the best performance with superior mechanical and wear characteristics.
Technical Paper

Effect of ZrO2 Nanoparticles Loading on the Tribo-Mechanical Behavior of Magnesium Alloy Nanocomposites

2023-11-10
2023-28-0130
Magnesium alloy nanocomposite prepared with hard ceramic particles via conventional technique is a promising future material for automotive applications due to its unique characteristics like low density, high strength, castability, and good wear resistance. The present study is to enhance the tribo-mechanical properties of alumina nanoparticle (10wt %) reinforced magnesium alloy (Mg/Al) composite by incorporating 1wt%, 3wt%, and 5wt% zirconium dioxide (ZrO2) nanoparticles through stir casting method. The tensile strength, impact toughness, hardness, and wear rate of developed composites were compared with (10wt %) alumina nanoparticles reinforced magnesium alloy composite. The nanocomposite containing 3wt% ZrO2 shows maximum impact strength of 22.8 J/mm2. The maximum tensile strength (88.9MPa), hardness (124.5BHN), and wear resistance (9.802mm3/m at 20N) are obtained for 5wt% ZrO2 magnesium alloy nanocomposite.
Journal Article

Preparation and Characterization of Lanthanum Ferrite Nanopowders Using Igepal CO 520 as a Surfactant

2022-12-23
2022-28-0581
In the present study, a reverse micelle method is used to fabricate Lanthanum ferrite nanopowders. Toluene (oil phase), Igepal CO 520 (non-ionic surfactant), and mixed aqueous solutions of Lanthanum (III) nitrate hydrate and Iron (III) nitrate nonohydrate are used to make the microreactor (water phase). The precipitate is formed by introducing ammonium hydroxide to microemulsion. The deposit is then centrifuged, dried, and calcined to prepare LaFeO3 nanopowders. The prepared LaFeO3 nanopowders were subjected to X-ray diffraction (XRD), and Transmission electron microscopy (TEM). XRD confirms the presence of LaFeO3 with cubic spinel structure annealed at 600°C. The size of the crystallites grows as the water to surfactant ratio rises. TEM shows the particle size at water to surfactant ratio of about 11.4 nm. Weak ferromagnetic behavior and reduced magnetic moments are revealed by magnetic measurements.
Technical Paper

Tribological Properties Evaluation of Newly Developed Friction Material for Automotive Disc Brake Pad

2020-09-25
2020-28-0511
The present work aims at investigating the tribological behavior of a newly developed friction materials and its performance is compared with the commercial brake pad under dry sliding conditions. The friction materials were made in the form of cylindrical pin from three different solid lubricants - graphite, molybdenum disulfide (MoS2) and graphene - keeping the other ingredients fixed. The prepared seven samples (BP01- Graphite, BP02- MoS2, BP03- Graphite &MoS2, BP04- Graphene, BP05- Graphene & Graphite, BP06 - Graphene & MoS2, BP07 - Graphene, Graphite & MoS2) were tested in pin and disc machine and compared to investigate the coefficient of friction, wear resistance followed by hardness test and thermal degradation analysis. The results showed that the wear loss and coefficient of friction of the developed friction materials were strongly influenced by the type and percentage of solid lubricants.
Technical Paper

Investigation of Setting Input Process Parameters for Getting Better Product Quality in Machining of AM60 Magnesium Alloy - TOPSIS and ANOVA Approach

2019-10-11
2019-28-0136
This investigation shows the improvement of Machining parameters on AM-60 Mg alloy made with the help of Gravity Die Casting and with reactions upheld symmetrical cluster with “Technique for Order Preference by Similarity to Ideal Solution” (TOPSIS). Which Focuses on the streamlining of Machining parameters utilizing the system to get least surface Roughness (Ra), Minimum Tool Wear, minimum Cutting Time, Power Requirement and Torque and Maximize MRR. A good amount of Machining tests was directed in view of the L9 Orthogonal array on CNC machine. The trials were performed on AM60 utilizing cutting device of grade-ISO 460.1-1140-034A0-XM GC3 of 12,16 and 25 mm width with cutting point of 140 degrees, all throughout the test work under various cutting conditions. TOPSIS and ANOVA were utilized to work out the major vital parameters like Cutting speed, feed rate, Depth of Cut and Tool Diameter which influence the Response. The normal qualities and estimated esteems are genuinely close.
Technical Paper

Tensile and Fatigue Behavior of Shallow Cryogenically Treated EN19 Alloy Steel

2019-10-11
2019-28-0100
Tensile and axial fatigue tests were conducted on shallow cryogenically treated EN19 medium carbon alloy steel to investigate its mechanical behavior. The test samples were conventionally heat treated then oil quenched at room temperature. Followed by the samples were kept for shallow cryogenic treatment to -80°C for 8 hours using liquid nitrogen. Then the samples were tempered in a muffle furnace to relieve the induced residual stresses. Tensile and axial fatigue test were carried out on both treated and non-treated samples to measure its tensile strength and fatigue behavior respectively. Microscopic examination also had done to compare the effect of shallow cryogenic treatment on its microstructure. The results exposed that there is an increase in the tensile strength and reduction in fatigue life of shallow cryogenically treated samples over base metal and improved wear resistance.
Technical Paper

Optimization of Machining Process Parameters for Minimizing the Waste Stream Response through Multi-Objective Optimization

2019-10-11
2019-28-0062
During the delivering of an item, any material created moreover to a definitive item will be named as waste. The waste produced in light of machining could be a notable conservation worry for creators. The shape and condition of waste streams created, and their transportation components divergence with the strategy utilized and also shift among the technique. The effect in view of each waste stream differs as well. This examination reports a machining strategy includes the procedure of material to give a completed or a semi-completed item. This is frequently done by misapplication tools, totaling, machines and distinctive data sources that are appropriate to the strategy. The procedures thought of for the point of this work includes machining of material manipulation devices to give parts and items. The yield of the technique incorporates the item and increase the waste streams. The waste streams will be in the form of Chips, Energy usage, and Worn cutting tools and Operating time.
Technical Paper

Function of Taguchi Grey Relation Analysis for Influencing the Process Parameter for Getting Better Product Quality and Minimize the Industrial Pollution by Coolants in Turning of Ti-6Al-4V Alloy

2019-10-11
2019-28-0065
Cutting liquids are important for cutting titanium. In spite of the fact that ventures are discovering routes that to cut titanium dry, the properties of this material reason imperative deterrents for doing this. It is sticky, has low Thermal conductivity, and highlights a low flash point. Thus, the chips don't divert the warmth, and the work will get sufficiently hot to touch off and consume. Cutting Fluids thwart the issue by greasing up the sting, flushing the chips away and cooling the work piece. To guarantee that the cutting liquid plays out these capacities well, titanium combinations lean toward cutting liquids conveyed at a high weight, generally inside the scope of 4,000 psi. to 7,000 psi. This thinks about reports the aftereffects of a Turning test led on the Ti- 6Al- 4V compound of the symmetrical exhibit with Grey relational analysis by Taguchi Method.
Technical Paper

A Study on Mechanical Properties and Multi Response Optimization of Process Parameters for Showing Signs of Improvement Product Quality in Drilling AlSi7Cu4 Utilizing GRA in Taguchi Method

2019-10-11
2019-28-0058
Showing and streamlining of cutting parameters are a champion among the most essential components in drilling processes. This examination displays the change of drilling procedures parameters on AlSi7Cu4 made by Gravity Die Casting and with replies in light of OA with Taughi GRA and ANOVA. The effects of alloying parts were bear on the Chemical Composition, microstructures, mechanical property, Hardness, X-Ray and S Das response is particularly analyzed. Motivations on the progression of Drilling parameters using the Taguchi strategy to obtain slightest surface Roughness (Ra), Circularity Error, Burr size and Thrust Force. Different Drilling Trails were coordinated using the L9 OA on CNC Milling machine. The examinations were accomplished on AlSi7Cu4 composite piece cutting tool of an ISO 460.1-1140-034A0-XM GC3 of 12 mm measurement with Tool 140 degrees, used all through the preliminary work under dry cutting conditions.
Technical Paper

Experimental Study on Verification of Alloy ASTM A510 High-Speed Micro Turning by Parameters Validation through Ranking Algorithm

2019-10-11
2019-28-0071
In the details and assembly, in the range of less than 1 mm, the number of functions increases, and the demand for industrial products in which the size and characteristics of components are decreasing is increasing. Micromachining is the most basic technology for producing these small parts and components. In this study, a series of turning operations, micromachining parameters, were performed under microscopic conditions to obtain the best response for the benefit of the industry. The needle is very high. Speed (3000, 3500, 4000 rpm), pre- (20, 40, 80 μm / sec), depth of cut (0.2.0.4.0.8 μm), tool radius (0.4.08, 1, 2 mm). Surface quality, material removal rates, energy consumption, and tool wear differences for various input process variables were investigated. Once the experiment is complete, we will develop an optimization strategy for this set of input parameters to improve responsiveness using the Grey Relational Analysis (GRA) and ANOVA.
Technical Paper

Improvement of Mechanical Properties, and Optimization of Process Parameters of AISI 1050 Spheriodized Annealed Steel by Ranking Algorithm

2019-10-11
2019-28-0143
AISI 1050 is used in the production of landing gear, actuators and other aerospace components but their application is limited due to machinability of the material. In any metal cutting operation the features of tools, input work materials, machine parameter settings will influence the process efficiency and output quality characteristics. A significant improvement in process efficiency may be obtained by process parameter optimization that identifies and determines the regions of critical process control factors leading to desired outputs or responses with acceptable variations ensuring a lower cost of manufacturing. This experimental study elucidates the problems and machinability issues like failure of tools and accuracy are found while machining and less output in machining. In the present study of spherodizing heat treatment of AISI 1050 was investigated during the turning operation in CNC lathe, under the consideration of several turning process parameters.
Technical Paper

Development and Influence of Setting Process Variables in Single Point Incremental Sheet Metal Forming of AA 8011 Using Complex Proportional Assessment and ANOVA

2019-10-11
2019-28-0064
Single point Incremental forming (SPIF) is a metal forming process that has achieved impeccable quality since the early 1990s. ISF is a very limited twisting process in which an improved device that must be used after a particular direction travels on a metal sheet to form the desired shape. Process parameters such as axial feed (mm), feed (mm / min), tool diameter (mm) and depth (mm) at the interface between samples during SPIF greatly affect the quality of the cone. Maximum thinning (mm), cone height (mm), wall angle (mm), formation time (minutes), etc. The purpose of this study was to study these parameters by improving the cone mass formed by VMC. For a detailed study of these parameters, experiments were performed using the orthogonal array L9. Output parameters such as mechanical quality effects were analysed using COPRAS (Complex Proportional Assessment of alternatives) and ANOVA.
Technical Paper

Corrosion and Corrosive Wear of Steel for Automotive Exhaust Application

2019-10-11
2019-28-0178
In the current scenario, durable exhaust system design, development and manufacturing are mandatory for the vehicle to be competitive and challenging in the automotive market. Material selection for the exhaust system plays a major role due to the increased warranty requirements and regulatory compliances. The materials used in the automotive exhaust application are cast iron, stainless steel, mild steel. The materials of the exhaust systems should be heat resistant, wear and corrosion resistant. Stainless steel is the most commonly used material in the automotive exhaust system. Due to increasing cost of nickel and some other alloying elements, there is a need to replace the stainless steel with EN 8 steel. Recent trends are towards light weight concepts, cost reduction and better performance. In order to reduce the cost and to achieve better wear and corrosion resistance, the surface of the EN 8 steel is modified with coatings.
Technical Paper

Corrosion Study of NIP and NIP Composite Plated Piston Ring

2018-07-09
2018-28-0103
Piston rings are used to seal the cavity formed between the piston and cylinder in order to allow the engine to operate efficiently. The Piston rings wear out due to constant rubbing action with cylinder wall and also have to withstand very high temperature. The top compression ring is the closest to combustion gases and is exposed to the greatest amount of chemical corrosion and highest operating temperature. This has lead to development of new coatings to piston ring with good wear and corrosion resistance. One such coating is Nickel Phosphorus (Ni-P) and Nickel Phosphorus composite coating (Ni-P SiC) used in automotive industry. Reinforcement of ceramic particle not only enhances the tribological property but also the corrosion resistance behavior. The electroplated Ni-P & Ni-P metal matrix with ultra-fine SiC particles of 0.6 microns to a coating thickness of 30 microns minimum.
Technical Paper

Sliding Wear and Friction Studies of Disc/ Pad Materials

2018-04-03
2018-01-0840
Brake disc provides friction force with minimum weight loss on application of brake. The pad material only experiences more wear and friction. Disc and pad materials are selected to give a stable and high coefficient of friction (0.25-0.40). COF is directly proportional to braking force generated and inversely proportional to the stopping distance. The aim of the study is to identify a new material for replacement of pad material in practice. In this study, wear, hardness and friction properties of E glass fiber with epoxy resin and cashew friction dust composite are studied and compared with brake pad material in practice. The hardness was measured using shore hardness tester. The wear and friction was measured using the pin on disc wear testing machine. The pad material was made as pin with cast iron as the disc material for wear studies. The wear studies were conducted for various load conditions and sliding velocities.
Technical Paper

Ni-P Composite Plating on Piston Ring for Improved Wear Performance

2017-07-10
2017-28-1977
Piston rings are used to seal the cavity formed between the piston and the cylinder in order to allow the engine to operate efficiently. The piston rings wear out due to constant rubbing action with cylinder wall and also have to withstand high temperature. This has lead to the development of new piston ring coatings with good wear properties under increasingly challenging running conditions. To improve the wear resistance of the piston rings several coating techniques are employed. One such technique is Ni-P composite coating which is widely used in the automotive industry. Reinforcement of ceramic particles enhances the tribological and mechanical properties of the coating. The base material of the piston ring used in this study is hardened carbon steel. The main objective is to develop an optimum Ni-P composite coating on piston ring to improve wear and friction resistance.
Technical Paper

Influence of Nano TiO2 Particles on the Properties and Behaviour of A356 Aluminium Metal Matrix Composites

2017-07-10
2017-28-1986
In this study, the TiO2 nano particles are incorporated with A356 aluminium to form a Metal Matrix Composite (MMC) to be utilized in aerospace, marine, military and automotive applications. Stir casting method was used for producing the metal matrix composites. A356 aluminium was reinforced with various weight percentage (wt%) of TiO2 under 10 minutes holding time and 450 rpm stirring speed. Mechanical properties such as tensile strength and hardness of the Metal Matrix Composite were tested. Using Scanning electron microscope the surface morphology and composition of the manufactured specimens were studied. Energy dispersive spectroscopic analysis was carried out to study the elemental composition of the MMC. The mechanical tests reveal that there is a significant enhancement in the properties of the composites with 1.5 wt% of TiO2.
Technical Paper

Study of Wear Behaviour of POM/Graphite and POM/MoS2 Composites

2017-07-10
2017-28-1988
POM/Graphite and POM/MoS2 composites were prepared using twin screw extruder for 2 and 6% compositions of fillers. The samples for impact test were prepared by injection moulding machine. The samples were studied for impact strength and wear loss. The wear test of the samples was carried out using pin on disc wear testing machine at various loads. Impact test of the samples was carried out by impact testing machine. The wear of the POM/MoS2 composites decreased compared to POM/Graphite composites. The impact results revealed that significant improvement in the impact strength for graphite and MoS2 fillers compared to pure POM. The microstructural study was conducted for wear samples to know the wear behavior of POM composites.
Technical Paper

Solid Lubricant Assisted Machining -An Environmental Friendly Clean Technology to Improve the Surface Quality

2017-07-10
2017-28-1964
Machining of materials has received significant consideration due to the increasing use of machining processes in various industrial applications. In machining, the heat generated in the cutting zone during machining is critical in deciding the work piece quality. Lubricants are widely used to reduce the heat generation. Their usage poses threat to environment and health hazards. Hence, there is a need to identify eco-friendly and user-friendly alternatives to conventional cutting fluids. Modern tribology has facilitated the use of solid lubricants such as graphite, calcium fluoride, molybdenum disulphide, and boric acid as an alternative to cutting fluids in machining. Solid lubricant assisted machining is an environmental friendly clean technology for improving the surface quality of the machined work piece.
Technical Paper

Cryogenic Treatment of SG Iron for Disc Brake Application

2015-04-14
2015-01-0689
Cryogenic treatment has a good potential to significantly increase the service life of automotive components, where friction and wear are the major factors in their operation leading to failure. Cryogenic treatment changes the surface as well as the core properties of the component in comparison with other treatments. It has significant improvement in wear and toughness. Numerous studies have been conducted on cryogenic treatment of steels and tool steels showing significant improvements in wear resistance, only minimal work has been done in cast irons. In this study, the effect of cryogenic treatment on the wear resistance, hardness, tensile strength, toughness and microstructure of spheroidal graphite iron was assessed. The deep cryogenic treatment was carried out at 87K for 12h and annealed in the chamber itself. The samples were tempered at 473K for 1 h.
X